912 resultados para Thin Melanoma
Resumo:
Increasing legislation has steadily been introduced throughout the world to restrict the use of heavy metals, particularly cadmium (Cd) and lead (Pb) in high temperature pigments, ceramics, and optoelectronic material applications. Removal of cadmium from thin-film optical and semiconductor device applications has been hampered by the absence of viable alternatives that exhibit similar properties with stability and durability. We describe a range of tin-based compounds that have been deposited and characterized in terms of their optical and mechanical properties and compare them with existing cadmium-based films that currently find widespread use in the optoelectronic and semiconductor industries. (c) 2008 Optical Society of America.
Resumo:
High spatial resolution vertical profiles of pore-water chemistry have been obtained for a peatland using diffusive equilibrium in thin films (DET) gel probes. Comparison of DET pore-water data with more traditional depth-specific sampling shows good agreement and the DET profiling method is less invasive and less likely to induce mixing of pore-waters. Chloride mass balances as water tables fell in the early summer indicate that evaporative concentration dominates and there is negligible lateral flow in the peat. Lack of lateral flow allows element budgets for the same site at different times to be compared. The high spatial resolution of sampling also enables gradients to be observed that permit calculations of vertical fluxes. Sulfate concentrations fall at two sites with net rates of 1.5 and 5.0nmol cm− 3 day− 1, likely due to a dominance of bacterial sulfate reduction, while a third site showed a net gain in sulfate due to oxidation of sulfur over the study period at an average rate of 3.4nmol cm− 3 day− 1. Behaviour of iron is closely coupled to that of sulfur; there is net removal of iron at the two sites where sulfate reduction dominates and addition of iron where oxidation dominates. The profiles demonstrate that, in addition to strong vertical redox related chemical changes, there is significant spatial heterogeneity. Whilst overall there is evidence for net reduction of sulfate within the peatland pore-waters, this can be reversed, at least temporarily, during periods of drought when sulfide oxidation with resulting acid production predominates.
Resumo:
We previously showed that growth of the nontumorigenic, immortal murine melanocyte line Mel-ab correlates with the depletion of protein kinase C (PKC), whereas quiescence is associated with elevated levels of this enzyme (Brooks G, et al., Cancer Res 51: 3281–3288, 1991). Here we report responses that occur in these cells downstream of PKC activation or downregulation. We examined induction of 12-O-tetradecanoylphorbol-13-acetate (TPA)-inducible sequence (TIS) gene expression in Mel-ab melanocytes and in their transformed counterparts, B16 melanoma cells. Exposure of quiescent Mel-ab cells to the PKC-activating phorbol esters TPA or sapintoxin A at 81 nM for 2 h increased levels of mRNA for six of seven TIS genes examined (twofold to 80-fold increase in steady-state RNA levels for TIS 1, 7, 8, 11, 21, and 28 (c-fos); TIS 10 expression was not affected). No induction of 115 gene expression was observed either in growing Mel-ab cells maintained in 324 nM phorbol 12,13-dibutyrate or in B16 cells previously unexposed to phorbol esters, in which normal PKC levels were endogenously depressed. The cAMP-elevating agents choleratoxin (10 nM) and dibutyryl cyclic AMP (2.5 mM) increased levels of TIS mRNA (with the exception of TIS 10) in both proliferating Mel-ab and B16 cells, suggesting that downregulation of the PKC pathway is specific and not a consequence of a general inhibition of all signalling pathways.
Resumo:
Asymmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymers of molecular weight M-n = 29,700g mol(-1) (M-PS = 9300 g mol(-1) M-PMMA = 20,100 g mol(-1), PD = 1.15, chi(PS) = 0.323, chi(PMMA) = 0.677) and M-n = 63,900 g mol(-1) (M-PS = 50,500 g mol(-1), M-PMMA = 13,400 g mol(-1), PD = 1.18, chi(PS) = 0.790, chi(PMMA) = 0.210) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Atomic force microscopy (AFM) was used to investigate the surface structure of thin films, prepared by spin-coating the diblock copolymers on a silicon substrate. We show that the nanostructure of the diblock copolymer depends on the molecular weight and volume fraction of the diblock copolymers. We observed a perpendicular lamellar structure for the high molar mass sample and a hexagonal-packed cylindrical patterning for the lower molar mass one. Small-angle X-ray scattering investigation of these samples without annealing did not reveal any ordered structure. Annealing of PS-b-PMMA samples at 160 degrees C for 24 h led to a change in surface structure.
Resumo:
Many clouds important to the Earth’s energy balance contain small amounts of liquid water, yet despite many improvements, large differences in retrievals of their liquid water amount and particle size still must be resolved.
Resumo:
Coatings and filters for spaceflight far-infrared components require a robust, non-absorptive low-index thin film material to contrast with the typically higher refractive index infrared materials. Barium fluoride is one such material for the 10 to 20µm wavelength infrared region, however its optical and mechanical properties vary depending on the process used to deposit it in thin film form. Thin films of dielectric produced by thermal evaporation are well documented as having a lower packing density and refractive index than bulk material. The porous and columnar micro structure of these films causes possible deterioration of their performance in varied environmental conditions, primarily because of the moisture absorption. Dielectric thin films produced by the more novel technique of ion-beam sputtering are denser with no columnar micro structure and have a packing density and refractive index similar to the bulk material. A comparative study of Barium Fluoride (BaF2) thin films made by conventional thermal evaporation and ion-beam sputtering is reported. Films of similar thicknesses are deposited on Cadmium Telluride and Germanium substrates. The optical and mechanical properties of these films are then examined. The refractive index n of the films is obtained from applying the modified Manifacier's evvelope method to the spectral measurements made on a Perkin Elmer 580 spectrophotometer. An estimate is also made of the value of the extinction coefficient k in the infrared wavelength transparent region of the thin film. In order to study the mechanical properties of the BaF2 films, and evaluate their usefulness in spaceflight infrared filters and coatings, the thin film samples are subjected to MIL-F-48616 environmental tests. Comparisons are made of their performance under these tests.
Resumo:
Optical thin films are coatings of amorphous, crystalline or polymerized materials, in single or multiple layers, on surfaces of optical components such as lenses and mirrors. These thin film coatings are used in optics to reduce reflections from optical parts (antireflection coatings) or to provide highly reflective surfaces (dielectric mirrors), as well as to protect components against abrasion and ambient moisture.
Resumo:
The first example of thin layer electrochemistry coupled to epifluorescence microscopy in the total internal reflectance mode is described and applied to the investigation of electrochemically modulated fluorescence of an organic dye (chloromethoxytetrazine) in solution. This technique allows to generate full redox switch of fluorescence when converting reversibly the dye into its anion radical, as well as to record the spectral features of the electrogenerated species. Recording simultaneously fluorescence intensity and lifetime along with coulombic charge as a function of the electrode potential will lead to a deep insight into the redox quenching mechanism.
Resumo:
An atomic force microscopy investigation was carried out on various thick (30–120 nm) polymethyl methacrylate-bpolystyrene and poly(2-(dimethyl amino)ethyl methacrylate)-b-polystyrene films prepared via a grafting-from method. The structure of the films was examined with both topographic and phase imaging. Several different morphologies were observed including a perforated lamellar phase with irregular perforations. In addition, complementary small-angle X-ray scattering and reflectometry results measurements on a non-grafted polymer are presented.
Resumo:
Sol-gel derived inorganic materials are of interest as hosts for non-linear optically active guest molecules and they offer particular advantages in the field of non-linear optics. Orientationally ordered glasses have been prepared using a sol-gel system based on tetramethoxysilane, methyltrimethoxysilane and a non-linear optical chromophore Disperse Red 1. The novel technique of photo-induced poling was used to generate enhanced levels of polar order. The level of enhancement is strongly dependent on the extent of gelation and an optimum preparation time of ∼100 h led to an enhancement factor of ∼5. Films prepared in this manner exhibited a high stability of the polar order.
Resumo:
This paper examines the growing dysfunction between the apparently increasing significance of diverse leisure practices in the countryside and the largely unchanging official response towards them. Although there is recognition in the recent rural White Paper (DOE and MAFF, 1995) that access is essential to enjoying the countryside, the construction of this term is dubious, since paid access agreements, based on producer requirements, are favoured over any form of demand-driven freedom to roam. Using the Countryside Stewardship Scheme (CSS) as an example of the incentive structure developed to promote this policy, the paper applies Plato's simulacrum as a reading of how this process is being utilised to underpin the dominant rights associated with rural property interests. In particular, the paper makes the point that rather than representing the corollary of a market situation, as its supporters claim, the CSS involves government grant for the eclectic provision of short term licences over ground which remains unmapped as anything other than its continued agricultural use. In concluding, the paper asserts that rather than representing an increase in the availability of leisure sites in the countryside, the CSS and other schemes represent a diversion from the wider and deeper socio-cultural process of continued wealth and power redistribution.
Resumo:
This review describes the state-of the-art of nano-, micro- and macrogels, membranes, micro- and nanocapsules, as well as multilayered thin films exhibiting amphoteric character. The synthetic strategies and physicochemical properties of amphoteric materials are outlined in light of the stimuli-responsive behavior and their potential application in nanotechnology, biotechnology and medicine.
The unsteady flow of a weakly compressible fluid in a thin porous layer II: three-dimensional theory
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a three-dimensional layer, composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Numerical solution of this three-dimensional evolution problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l, a situation which occurs frequently in the application to oil and gas reservoir recovery and which leads to significant stiffness in the numerical problem. Under the assumption that $\epsilon\propto h/l\ll 1$, we show that, to leading order in $\epsilon$, the pressure field varies only in the horizontal directions away from the wells (the outer region). We construct asymptotic expansions in $\epsilon$ in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive expressions for all significant process quantities. The only computations required are for the solution of non-stiff linear, elliptic, two-dimensional boundary-value, and eigenvalue problems. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the layer, $\epsilon$, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighbourhood of wells and away from wells.
Resumo:
We describe a novel method for determining the pressure and velocity fields for a weakly compressible fluid flowing in a thin three-dimensional layer composed of an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting and/or extracting fluid. Our approach uses the method of matched asymptotic expansions to derive expressions for all significant process quantities, the computation of which requires only the solution of linear, elliptic, two-dimensional boundary value and eigenvalue problems. In this article, we provide full implementation details and present numerical results demonstrating the efficiency and accuracy of our scheme.
Resumo:
This paper outlines a study of the microstructure of thin sheets of ivory used as a painting support for portrait miniatures. Warping of the ivory support is one of the main problems commonly found in portrait miniatures from the late eighteenth century and early nineteenth century. Portrait miniatures from this period are painted on very thin sheets of ivory that are often only 0.2 mm in thickness. Warping can lead to cracking of the ivory and can also accentuate flaking of the paint layer. The problem of warping in ivory has thus been of long-term interest to conservators who deal with portrait miniatures, including those at the Victoria and Albert (V&A) Museum. The causes of warping are complex. However, it should be noted that artists normally stuck the thin ivory sheets onto paper or card before commencing the painting. The possible causes of warping therefore are thought to relate to the differential reactions of the ivory/adhesive/paper or card layers to changes in relative humidity (RH). It is well known that ivory is hygroscopic and anisotropic.1 However, only a few scientific studies have been carried out related to this subject and systematic analyses of the morphological and microstructural changes due to changes in RH or moisture in such thin sheets of ivory have yet to be investigated.