953 resultados para Thermal characterization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background, Aim and Scope The impact of air pollution on school children’s health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. Materials and methods In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM2.5), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. Results For outdoor PN and PM2.5, early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM2.5 and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM2.5 level was mainly affected by the outdoor PM2.5 (r = 0.68, p<0.01), whereas the indoor PN concentration had some association with outdoor PN values (r = 0.66, p<0.01) even though the indoor PN concentration was occasionally influenced by indoor sources, such as cooking, cleaning and floor polishing activities. Correlation analysis indicated that the outdoor PM2.5 was inversely correlated with the indoor to outdoor PM2.5 ratio (I/O ratio) (r = -0.49, p<0.01), while the indoor PN had a weak correlation with the I/O ratio for PN (r = 0.34, p<0.01). Discussion and Conclusions The results showed that occupancy did not cause any major changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100 – 400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM2.5 was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. Recommendations and Perspectives The findings obtained in this study are useful for epidemiological studies to estimate the total personal exposure of children, and to develop appropriate control strategies for minimizing the adverse health effects on school children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a thorough thermal study on a fleet of DC traction motors which were found to suffer from overheating after 3 years of full operation. Overheating of these traction motors is attributed partly because of the higher than expected number of starts and stops between train terminals. Another probable cause of overheating is the design of the traction motor and/or its control strategy. According to the motor manufacturer, a current shunt is permanently connected across the motor field winding. Hence, some of the armature current is bypassed into the current shunt. The motor then runs above its rated speed in the field weakening mode. In this study, a finite difference model has been developed to simulate the temperature profile at different parts inside the traction motor. In order to validate the simulation result, an empty vehicle loaded with drums of water was also used to simulate the full pay-load of a light rail vehicle experimentally. The authors report that the simulation results agree reasonably well with experimental data, and it is likely that the armature of the traction motor will run cooler if its field shunt is disconnected at low speeds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, research has focused on bone marrow derived multipotent mesenchymal precursor cells (MPC) for their potential clinical use in bone engineering. Prior to clinical application, MPC-based treatment concepts need to be evaluated in preclinical, immunocompetent, large animal models. Sheep in particular are considered a valid model for orthopaedic and trauma related research. However, ovine MPC and their osteogenic potential remain poorly characterized. In the present study, ex vivo expanded MPC isolated from ovine bone marrow proliferated at a higher rate than osteoblasts (OB) derived from tibial compact bone as assessed using standard 2D culture. MPC expressed the respective phenotypic profile typical for different mesenchymal cell populations (CD14-/CD31-/CD45- /CD29+/CD44+/CD166+) and showed a multilineage differentiation potential. When compared to OB, MPC had a higher mineralization potential under standard osteogenic culture conditions and expressed typical markers such as osteocalcin, osteonectin and type I collagen at the mRNA and protein level. After 4 weeks in 3D culture, MPC constructs demonstrated higher cell density and mineralization, whilst cell viability on the scaffolds was assessed >90%. Cells displayed a spindle-like morphology and formed an interconnected network. Implanted subcutaneously into NOD/SCID mice on type I collagen coated polycaprolactone-tricalciumphosphate (mPCL-TCP) scaffolds, MPC presented a higher developmental potential than osteoblasts. In summary, this study provides a detailed in vitro characterisation of ovine MPC from a bone engineering perspective and suggests that MPC provide promising means for future bone disease related treatment applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic indium hydroxide nanomaterials were obtained by a low temperature soft-chemical method without any surfactants. The transition of nano-cubic indium hydroxide to cubic indium oxide during dehydroxylation has been studied by infrared emission spectroscopy. The spectra are related to the structure of the materials and the changes in the structure upon thermal treatment. The infrared absorption spectrum of In(OH)3 is characterised by an intense OH deformation band at 1150 cm-1 and two O-H stretching bands at 3107 and 3221 cm-1. In the infrared emission spectra, the hydroxyl-stretching and hydroxyl-bending bands diminish dramatically upon heating, and no intensity remains after 200 °C. However, new low intensity bands are found in the OH deformation region at 915 cm-1 and in OH stretching region at 3437 cm-1. These bands are attributed to the vibrations of newly formed InOH bonds because of the release and transfer of protons during calcination of the nanomaterial. The use of infrared emission spectroscopy enables the low-temperature phase transition brought about through dehydration of In(OH)3 nanocubes to be studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aluminate hydrotalcites are proposed to have either of the following formulas: Mg4Al2(OH)12(CO3 2-)·xH2O or Mg4Al2(OH)12(CO3 2-, SO4 2-)·xH2O. A pure hydrotalcite phase forms when magnesium chloride and aluminate solns. are mixed at a 1:1 volumetric ratio at pH 14. The synthesis of the aluminate hydrotalcites using seawater results in the formation of an impurity phase bayerite. Two decompn. steps have been identified for the aluminate hydrotalcites: (1) removal of interlayer water (230 °C) and (2) simultaneous dehydroxylation and decarbonation (330 °C).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally activated Palygorskite (Pg) has been found to be a good adsorbent material for ammonia (NH3) and sulfur dioxide (SO2). This research investigated the effect of thermal treatment on pore structure and surface acid-alkali properties of Pg through the adsorption-desorption of NH3 and SO2. The results showed that, up to 200 °C, the adsorption of NH3 on Pg was significantly higher than SO2. This was due to NH3 being adsorbed in the internal surface of Pg and forming hydrogen bonds (H-bonds) with coordinated water. The increase in thermal treatment temp. from 150 to 550 °C, showed a gradual decrease in the no. of surface acid sites, while the no. of surface alk. sites increased from 200 to 400 °C. The change of surface acidity-alk. sites is due to the collapse of internal channels of Pg and desorption of different types of hydroxyls assocd. with the Pg structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M2) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M2, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic poentials and Cauchy-Born rule. The key parameters used in M2 are firstly investigated using a benchmark problem. Then M2 is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Building insulation is often used to reduce the conduction heat transfer through building envelope. With a higher level of insulation (or a greater R-value), the less the conduction heat would transfer through building envelope. In this paper, using building computer simulation techniques, the effects of building insulation levels on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that depending on the types of buildings and the climates of buildings located, increasing the level of building insulation will not always bring benefits in energy saving and thermal comfort, particularly for internal-load dominated office buildings located in temperate/tropical climates. The possible implication of building insulation in face of global warming has also been examined. Compared with the influence of insulation on building thermal performance, the influence on building energy use is relatively small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal behavior and decomposition of kaolinite-potassium acetate intercalation complex was investigated through a combination of thermogravimetric analysis and infrared emission spectroscopy. Three main changes were observed at 48, 280, 323 and 460 °C which were attributed to (a) the loss of adsorbed water (b) loss of the water coordinated to acetate ion in the layer of kaolinite (c) loss of potassium acetate in the complex and (d) water through dehydroxylation. It is proposed that the KAc intercalation complex is stability except heating at above 300 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the kaolinite intercalation complex when the temperature is raised. The dehydration of the intercalation complex is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration is completed by 400 °C and partial dehydroxylation by 650 °C. The inner hydroxyl group remained until around 700 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a biomaterial to be considered suitable for bone repair it should ideally be both bioactive and have a capacity for controllable drug delivery; as such, mesoporous SiO2 glass has been proposed as a new class of bone regeneration material by virtue of its high drug-loading ability and generally good biocompatibility. It does, however, have less than optimum bioactivity and controllable drug delivery properties. In this study, we incorporated strontium (Sr) into mesoporous SiO2 in an effort to develop a bioactive mesoporous SrO–SiO2 (Sr–Si) glass with the capacity to deliver Sr2+ ions, as well as a drug, at a controlled rate, thereby producing a material better suited for bone repair. The effects of Sr2+ on the structure, physiochemistry, drug delivery and biological properties of mesoporous Sr–Si glass were investigated. The prepared mesoporous Sr–Si glass was found to have an excellent release profile of bioactive Sr2+ ions and dexamethasone, and the incorporation of Sr2+ improved structural properties, such as mesopore size, pore volume and specific surface area, as well as rate of dissolution and protein adsorption. The mesoporous Sr–Si glass had no cytotoxic effects and its release of Sr2+ and SiO44− ions enhanced alkaline phosphatase activity – a marker of osteogenic cell differentiation – in human bone mesenchymal stem cells. Mesoporous Sr–Si glasses can be prepared to porous scaffolds which show a more sustained drug release. This study suggests that incorporating Sr2+ into mesoporous SiO2 glass produces a material with a more optimal drug delivery profile coupled with improved bioactivity, making it an excellent material for bone repair applications. Keywords: Mesoporous Sr–Si glass; Drug delivery; Bioactivity; Bone repair; Scaffolds

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of kaolinite-potassium acetate intercalation composite was prepared. The thermal behavior and decomposition of these composites were investigated by simultaneous differential scanning calorimetry-thermogravimetric analysis (DSC-TGA), X-ray diffraction (XRD) and Fourier-transformation infrared (FT-IR). The XRD pattern at room temperature indicated that intercalation of potassium acetate into kaolinite causes an increase of the basal spacing from 0.718 to 1.428nm. The peak intensity of the expanded phase of the composite decreased with heating above 300°C, and the basal spacing reduced to 1.19nm at 350°C and 0.718nm at 400°C. These were supported by DSC-TGA and FT-IR measurements, where the endothermic reactions are observed between 300 and 600°C. These reactions can be divided into two stages: 1) Removal of the intercalated molecules between 300-400°C. 2) Dehydroxylation of kaolinite between 400-600°C. Significant changes were observed in the infrared bands assigned to outer surface hydroxyl, inner surface hydroxyl, inner hydroxyl and hydrogen bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the soil minerals destinezite and diadochite. These two minerals are identical except for their morphology. Diadochite is amorphous whereas destinezite is crystalline. Both minerals are found in soils. It is important to understand the stability of these minerals because soils are subject to bush fires especially in Australia. The thermal analysis patterns of the two minerals are similar but not identical. Subtle differences are observed in the DTG patterns. For destinezite, two DTG peaks are observed at 129 and 182°C attributed to the loss of hydration water, whereas only a broad peak with maximum at 84°C is observed for diadochite. Higher temperature mass losses at 685°C for destinezite and 655°C for diadochite, based upon the ion current curves, are due to sulphate decomposition. This research has shown that at low temperatures the minerals are stable but at high temperatures, as might be experienced in a bush fire, the minerals decompose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to ascertain the stability of the ‘cave’ mineral brushite. X-ray diffraction shows that brushite from the Jenolan Caves is very pure. Thermogravimetric analysis coupled with ion current mass spectrometry shows a mass loss at 111°C due to loss of water of hydration. A further decomposition step occurs at 190°C with the conversion of hydrogen phosphate to a mixture of calcium ortho-phosphate and calcium pyrophosphate. TG-DTG shows the mineral is not stable above 111°C. A mechanism for the formation of brushite on calcite surfaces is proposed, and this mechanism has relevance to the formation of brushite in urinary tracts.