937 resultados para The cancer genome atlas
Resumo:
BACKGROUND There is an urgent need for preclinical models of prostate cancer; however, clinically relevant patient-derived prostate cancer xenografts (PDXs) are demanding to establish. METHODS Sixty-seven patients who were undergoing palliative transurethral surgery or radical prostatectomy for histologically confirmed, clinically relevant prostate cancer were included in the study. Fresh prostate cancer tissue was identified by frozen analysis in 48 patients. The cancer tissue was transplanted subcutaneously and under the renal capsule of NSG and NOG mice supplemented with human testosterone. All growing PDXs were evaluated by histology and immunohistochemistry. RESULTS Early assessment of the animals at least three months after transplantation included 27/48 (56.3%) eligible PDX cohorts. PDX growth was detected in 10/27 (37%) mouse cohorts. Eight of the ten PDXs were identified as human donor derived lymphomas, including seven Epstein Barr virus (EBV)-positive diffuse large B-cell lymphomas and one EBV-negative peripheral T-cell lymphoma. One sample consisted of benign prostatic tissue, and one sample comprised a benign epithelial cyst. Prostate cancer was not detected in any of the samples. CONCLUSIONS Tumors that arise within the first three months after prostate cancer xenografting may represent patient-derived EBV-positive lymphomas in up to 80% of the early growing PDXs when using triple knockout NSG immunocompromised mice. Therefore, lymphoma should be excluded in prostate cancer xenografts that do not resemble typical prostatic adenocarcinoma. Prostate 9999: XX-XX, 2014. © 2015 Wiley Periodicals, Inc.
Resumo:
Complete transcriptomic data at high resolution are available only for a few model organisms with medical importance. The gene structures of non-model organisms are mostly computationally predicted based on comparative genomics with other species. As a result, more than half of the horse gene models are known only by projection. Experimental data supporting these gene models are scarce. Moreover, most of the annotated equine genes are single-transcript genes. Utilizing RNA sequencing (RNA-seq) the experimental validation of predicted transcriptomes has become accessible at reasonable costs. To improve the horse genome annotation we performed RNA-seq on 561 samples of peripheral blood mononuclear cells (PBMCs) derived from 85 Warmblood horses. The mapped sequencing reads were used to build a new transcriptome assembly. The new assembly revealed many alternative isoforms associated to known genes or to those predicted by the Ensembl and/or Gnomon pipelines. We also identified 7,531 transcripts not associated with any horse gene annotated in public databases. Of these, 3,280 transcripts did not have a homologous match to any sequence deposited in the NCBI EST database suggesting horse specificity. The unknown transcripts were categorized as coding and noncoding based on predicted coding potential scores. Among them 230 transcripts had high coding potential score, at least 2 exons, and an open reading frame of at least 300 nt. We experimentally validated 9 new equine coding transcripts using RT-PCR and Sanger sequencing. Our results provide valuable detailed information on many transcripts yet to be annotated in the horse genome.
Resumo:
BACKGROUND Parents' knowledge about cancer, treatment, potential late effects and necessary follow-up is important to reassure themselves and motivate their child to participate in regular follow-up. We aimed to describe (i) parents' perception of information received during and after treatment; (ii) parents' current needs for information today, and to investigate; and (iii) associations between information needs and socio-demographic and clinical characteristics. METHODS As part of the Swiss Childhood Cancer Survivor Study, a follow-up questionnaire was sent to parents of survivors, diagnosed < 16 years and after 1990, and aged 11-17 years at study. We assessed parents' perception of information received and information needs, concerns about consequences of the cancer and socio-demographic information. Information on clinical data was available from the Swiss Childhood Cancer Registry. RESULTS Of 309 eligible parents, 189 responded (67%; mean time since diagnosis: 11.3 years, SD = 2.5). Parents perceived to have received verbal information (on illness: verbal 91%, written 40%; treatment: verbal 88%, written 46%; follow-up: verbal 85% written 27%; late effects: verbal 75%, written 19%). Many parents reported current information needs, especially on late effects (71%). The preferred source was written general (28%) or verbal information (25%), less favored was online information (12%). Information needs were associated with migration background (P = 0.039), greater concerns about consequences of cancer (P = 0.024) and no information received (P = 0.035). CONCLUSION Parents reported that they received mainly verbal information. However, they still needed further information especially about possible late effects. Individual long-term follow-up plans, including a treatment summary, should be provided to each survivor, preferably in written format.
Resumo:
Spermadhesins belong to a novel family of secretory proteins of the male genital tract. They are major proteins of the seminal plasma and have been found peripherally associated to the sperm surface. So far, they have only been detected in ungulates, specifically in pig, cattle, and horse, respectively. Spermadhesins form a subgroup of the superfamily of proteins with a CUB-domain that has been found in a variety of developmentally regulated proteins. The structure and function of the spermadhesins have been investigated in the pig. They are multifunctional proteins showing a range of ligand-binding abilities, e.g. to carbohydrates, phospholipids, and protease inhibitors, suggesting that they may be involved in different steps of fertilization. We report here the genomic organization of the porcine spermadhesin gene cluster as well as a detailed comparative analysis with respect to other mammalian species. The porcine spermadhesin genes are located on SSC 14q28-q29 in a region syntenic to HSA 10q26. The pig contains five closely linked spermadhesin genes, whereas only two spermadhesin genes are present in the cattle genome. Inactive copies of spermadhesin genes are still detectable in the human, chimp, and dog genome while the corresponding region was lost from the rodent genomes of mouse and rat. Within the pig, the five spermadhesin genes contain both highly diverged and highly conserved regions. Interestingly, the pattern of divergence does not correlate with the position of the exons. Evolutionary analyses suggest that the pattern of diversity is shaped by ancestral variation, recombination, and new mutations.
Resumo:
The epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity. In ciliates, such as Paramecium these RNAs participate in the programming of large-scale genome reorganization during development, distinguishing germline-limited DNA, which is excised, from somatic-destined DNA. Only a handful of proteins playing roles in this process have been identified so far, including typical RNAi-derived factors such as Dicer-like and Piwi proteins. Here we report and characterize two novel proteins, Pdsg1 and Pdsg2 (Paramecium protein involved in Development of the Somatic Genome 1 and 2), involved in Paramecium genome reorganization. We show that these proteins are necessary for the excision of germline-limited DNA during development and the survival of sexual progeny. Knockdown of PDSG1 and PDSG2 genes affects the populations of small RNAs known to be involved in the programming of DNA elimination (scanRNAs and iesRNAs) and chromatin modification patterns during development. Our results suggest an association between RNA-mediated trans-generational epigenetic signal and chromatin modifications in the process of Paramecium genome reorganization.
Resumo:
Tropical rainforest hunter-gatherer populations worldwide share the pygmy phenotype, or small human body size. The evolutionary history of this phenotype is largely unknown. Here we studied DNA from the Batwa, a rainforest hunter-gatherer population from east central Africa, to identify regions of the Batwa genome that underlie the pygmy phenotype. We then performed population genomic analyses to study the evolution of these regions, including comparisons with the Baka, a west central African rainforest hunter-gatherer population. We conclude that the pygmy phenotype likely arose due to positive natural selection and that it arose possibly multiple times within Africa. These results support longstanding anthropological hypotheses that small body size confers an important selective advantage for human rainforest hunter-gatherers.
Resumo:
Myosin B (MyoB) is one of the two short class XIV myosins encoded in the Plasmodium genome. Class XIV myosins are characterized by a catalytic "head," a modified "neck," and the absence of a "tail" region. Myosin A (MyoA), the other class XIV myosin in Plasmodium, has been established as a component of the glideosome complex important in motility and cell invasion, but MyoB is not well characterized. We analyzed the properties of MyoB using three parasite species as follows: Plasmodium falciparum, Plasmodium berghei, and Plasmodium knowlesi. MyoB is expressed in all invasive stages (merozoites, ookinetes, and sporozoites) of the life cycle, and the protein is found in a discrete apical location in these polarized cells. In P. falciparum, MyoB is synthesized very late in schizogony/merogony, and its location in merozoites is distinct from, and anterior to, that of a range of known proteins present in the rhoptries, rhoptry neck or micronemes. Unlike MyoA, MyoB is not associated with glideosome complex proteins, including the MyoA light chain, myosin A tail domain-interacting protein (MTIP). A unique MyoB light chain (MLC-B) was identified that contains a calmodulin-like domain at the C terminus and an extended N-terminal region. MLC-B localizes to the same extreme apical pole in the cell as MyoB, and the two proteins form a complex. We propose that MLC-B is a MyoB-specific light chain, and for the short class XIV myosins that lack a tail region, the atypical myosin light chains may fulfill that role.
Resumo:
Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.
Resumo:
Over 250 Mendelian traits and disorders, caused by rare alleles have been mapped in the canine genome. Although each disease is rare in the dog as a species, they are collectively common and have major impact on canine health. With SNP-based genotyping arrays, genome-wide association studies (GWAS) have proven to be a powerful method to map the genomic region of interest when 10-20 cases and 10-20 controls are available. However, to identify the genetic variant in associated regions, fine-mapping and targeted re-sequencing is required. Here we present a new approach using whole-genome sequencing (WGS) of a family trio without prior GWAS. As a proof-of-concept, we chose an autosomal recessive disease known as hereditary footpad hyperkeratosis (HFH) in Kromfohrl änder dogs. To our knowledge, this is the first time this family trio WGS-approach, has successfully been used to identify a genetic variant that perfectly segregates with a canine disorder. The sequencing of three Kromfohrl änder dogs from a family trio (an affected offspring and both its healthy parents) resulted in an average genome coverage of 9.2X per individual. After applying stringent filtering criteria for candidate causative coding variants, 527 single nucleotide variants (SNVs) and 15 indels were found to be homozygous in the affected offspring and heterozygous in the parents. Using the computer software packages ANNOVAR and SIFT to functionally annotate coding sequence differences and to predict their functional effect, resulted in seven candidate variants located in six different genes. Of these, only FAM83G:c155G>C (p.R52P) was found to be concordant in eight additional cases and 16 healthy Kromfohrl änder dogs.
Resumo:
Aminoacyl-tRNA synthetases (aaRSs) ligate amino acids to their cognate tRNAs, allowing them to decode the triplet code during translation. Through different mechanisms aaRSs also perform several non-canonical functions in transcription, translation, apoptosis, angiogenesis and inflammation. Drosophila has become a preferred system to model human diseases caused by mutations in aaRS genes, to dissect effects of reduced translation or non-canonical activities, and to study aminoacylation and translational fidelity. However, the lack of a systematic annotation of this gene family has hampered such studies. Here, we report the identification of the entire set of aaRS genes in the fly genome and we predict their roles based on experimental evidence and/or orthology. Further, we propose a new, systematic and logical nomenclature for aaRSs. We also review the research conducted on Drosophila aaRSs to date. Together, our work provides the foundation for further research in the fly aaRS field.
Resumo:
We sequenced the complete genome of the bovine viral diarrhea virus (BVDV) strain Carlito. It belongs to the subgenotype 1e that is described in Europe only and represents the second most prevalent subgenotype in Switzerland. This is the first report of a full-length sequence of BVDV-1e.
Resumo:
The U7 snRNA, together with both common and unique snRNP proteins, forms the U7 snRNP particle. This particle is a major component of the 3' processing machinery that converts histone pre-mRNA into mature mRNA in the eukaryotic nucleus. The genes for many snRNAs are present in multiple copies and often have many pseudogenes. Southern blot experiments using U7 oligonucleotide and gene probes have identified only one strongly hybridizing band and three weakly hybridizing bands in mouse genomic DNA. Previously, two laboratories isolated genomic clones encoding one functional U7 gene and three presumed pseudogenes. Since all the genes were isolated on separate, nonoverlapping genomic fragments, the four genes are not tightly clustered in the mouse genome. In this study, we use fluorescence in situ hybridization to determine the chromosomal locations of these clones and their possible linkage to histone loci. Two of the pseudogenes map to mouse Chromosome 1, but are many megabases apart, whereas the active U7 gene maps to Chromosome 6. Possible mechanisms for this localization pattern are discussed.
Resumo:
Aeromonas salmonicida subsp. salmonicida is the causal agent of furunculosis in salmonids. We recently identified a group of genomic islands (AsaGEI) in this bacterium. AsaGEI2a, one of these genomic islands, has almost exclusively been identified in isolates from North America. To date, Aeromonas salmonicida subsp. salmonicida JF3224, a strain isolated from a wild brown trout (Salmo trutta) caught in Switzerland, was the only European isolate that appeared to bear AsaGEI2a. We analyzed the genome of JF3224 and showed that the genomic island in JF3224 is a new variant of AsaGEI, which we have called AsaGEI2b. While AsaGEI2b shares the same integrase gene and insertion site as AsaGEI2a, it is very different in terms of many other features. Additional genomic investigations combined with PCR genotyping revealed that JF3224 is sensitive to growth at 25°C, leading to insertion sequence-dependent rearrangement of the locus on the pAsa5 plasmid that encodes a type three secretion system, which is essential for the virulence of the bacterium. The analysis of the JF3224 genome confirmed that AsaGEIs are accurate indicators of the geographic origins of A. salmonicida subsp. salmonicida isolates and is another example of the susceptibility of the pAsa5 plasmid to DNA rearrangements.
Resumo:
Puumala virus (PUUV) is one of the predominant hantavirus species in Europe causing mild to moderate cases of haemorrhagic fever with renal syndrome. Parts of Lower Saxony in north-western Germany are endemic for PUUV infections. In this study, the complete PUUV genome sequence of a bank vole-derived tissue sample from the 2007 outbreak was determined by a combined primer-walking and RNA ligation strategy. The S, M and L genome segments were 1,828, 3,680 and 6,550 nucleotides in length, respectively. Sliding-window analyses of the nucleotide sequences of all available complete PUUV genomes indicated a non-homogenous distribution of variability with hypervariable regions located at the 3′-ends of the S and M segments. The overall similarity of the coding genome regions to the other PUUV strains ranged between 80.1 and 84.7 % at the level of the nucleotide sequence and between 89.5 and 98.1 % for the deduced amino acid sequences. In comparison to the phylogenetic trees of the complete coding sequences, trees based on partial segments revealed a general drop in phylogenetic support and a lower resolution. The Astrup strain S and M segment sequences showed the highest similarity to sequences of strains from geographically close sites in the Osnabrück Hills region. In conclusion, a primer-walking-mediated strategy resulted in the determination of the first complete nucleotide sequence of a PUUV strain from Central Europe. Different levels of variability along the genome provide the opportunity to choose regions for analyses according to the particular research question, e.g., large-scale phylogenetics or within-host evolution.
Resumo:
Advanced-stage prostate cancer (PCa) patients are often diagnosed with bone metastases. Bone metastases remain incurable and therapies are palliative. PCa cells prevalently cause osteoblastic lesions, characterized by an excess of bone formation. The prevailing concept indicates that PCa cancer cell secrete an excess of paracrine factors stimulating osteoblasts directly or indirectly, thereby leading to an excess of bone formation. The exact mechanisms by which bone formation stimulates PCa cell growth are mostly elusive. In this review, the mechanisms of PCa cancer cell osteotropism, the cancer cell-induced response within the bone marrow/bone stroma, and therapeutic stromal targets will be summarized.