933 resultados para Testicular apêndices
Resumo:
Cystic lesions in the testis of children are rare and in most cases benign tumors. However, a preoperative diagnostic work-up could contribute to planning the surgical procedure: orchiectomy in the case of potential malignancy or otherwise a testis-sparing approach. In this study we reviewed our recent cases of benign cystic testicular tumors and the corresponding literature. The different entities are presented with details of the diagnostic work-up, pathology and treatment of these lesions. In all presented cases, organ-preserving treatment was performed. This practice is to be recommended in the case of all prepubertal cystic testicular lesions.
Resumo:
In traditional medicine of Cameroon, Nymphaea lotus Linn. (Nympheaceae) is used for treatment of male sexual disorders. The aim of this study was to evaluate the effects of the N. lotus flowers aqueous extracts on general mating behavior, fertility and some androgenic parameters of normoglycemic and diabetic adult male rats. Mating behavior assessment was carried out with primiparous and with oestrus female rats. Male rats were divided into 5 groups and subjected once in a day to the following treatment: distilled water (10 mL/kg), Sildenafil citrate (5mg/kg), Testosterone enanthate (5mg/kg) and plant extract (75 mg/kg and 150 mg/kg). Treatment lasted for 8 and 55 days before sacrifice. Organ weight, epididymal sperm counts, motility, viability, histomorphometric analysis, muscular strength, seminal fructose, cholesterol level, epididymal and serum proteins testicular were determined. Results showed a dose- dependant influence of the treatment in sperm count and motility which significantly increases compared to the distilled water-administered control. An increase in some sexual performance parameters (mount and intromission frequencies) was observed in both diabetic and normal rats compared to respective controls. The latencies of mount and intromission were significantly reduced. Computed frequencies of penile licking, index of libido and sexual motivation were higher in normal and diabetic extract-treated animals; which suggest an enhancement of motivational parameters. The treatment also caused significant increases in the weight of the testis, prostate, epididymis, in serum cholesterol and epididymal protein level in normal rats compared to the distilled water-administered control. These results indicate an androgenic pro-sexual potential of N. lotus in male rats and justify the empirical use of N. lotus in the management of erectile dysfunction and fertility disorders in males. Key-words: Nymphaea lotus, prosexual, androgenic, fertility, diabetic, male rat. //Selon les tradipraticiens de l’Ouest-Cameroun, Nymphaea lotus Linn. (N. lotus), de la famille des Nymphéacées, est utilisé pour le traitement des dysfonctionnements sexuels chez les hommes. Dans cette étude, l’effet de l’extrait aqueux des fleurs de N. lotus sur la fonction de reproduction des rats mâles adultes normaux et diabétiques a été évalué. Dans le but d’évaluer les effets de l’extrait aqueux des fleurs de N. lotus sur les paramètres généraux de copulation, d’androgénicité et de fertilité, les rats normoglycémiques et diabétiques ont été divisé en 3 groupes contrôle [Groupe I- recevant de l’eau distillée, Groupe II et III recevant respectivement du citrate de sildénafil (5 mg/kg) et l’énanthate de testostérone (5 mg/kg)] et deux groupes expérimentaux traités à l’extrait aux doses 75 mg/kg (Groupe IV) et 150 mg/kg (Groupe V). L’eau distillée, l’extrait et la substance de référence était administré per os une fois par jour. Pour analyser le comportement sexuel et la fertilité, des femelles primipares et en oestrus étaient utilisées. Le traitement a duré 8 et 55 jours avant le sacrifice. Le poids relatif des organes, le nombre de spermatozoïde, la motilité, les analyses morphométriques, la force musculaire, le taux de cholestérol, le taux de protéines sériques et épididymaires étaient déterminé. Le temps de latence de monte et d’intromission a diminué significativement alors que la fréquence d’éjaculation a augmenté. L’index de libido, la fréquence de monte, d’intromission, d’éjaculation, d’orientation des mâles vis-à-vis d’eux même et l’index de motivation sexuelle a augmenté chez les animaux traités l’extrait comparés à ceux ayant reçu de l’eau distillée aussi bien chez les normaux que chez le diabétiques qui n’enregistrent d’ailleurs aucune éjaculation. Le traitement a augmenté significativement (P < 0,01) le poids des testicules, de la prostate et de l’épididyme. Il est observé une augmentation dose-dépendante du nombre et de la motilité des spermatozoïdes (P < 0,05), ainsi qu’une augmentation significative (P < 0,001) temps-dépendant du taux de cholestérol sérique et de protéines épididymaires. Ces résultats indiquent un potentiel androgénique pro-érectile de N. lotus chez les rats mâles et justifient l’utilisation empirique des fleurs de N. lotus dans le traitement des dysfonctions érectiles et des problèmes de fertilité chez les hommes. Mots-clés: Nymphaea lotus, pro-érectile, androgénique, fertilité, diabétiques, rat male
Resumo:
Following development of the fetal bipotential gonad into a testis, male genital differentiation requires testicular androgens. Fetal Leydig cells produce testosterone that is converted to dihydrotestosterone in genital skin, resulting in labio-scrotal fusion. An alternative 'backdoor' pathway of dihydrotestosterone synthesis that bypasses testosterone has been described in marsupials, but its relevance to human biology has been uncertain. The classic and backdoor pathways share many enzymes, but a 3α-reductase, AKR1C2, is unique to the backdoor pathway. Human AKR1C2 mutations cause disordered sexual differentiation, lending weight to the idea that both pathways are required for normal human male genital development. These observations indicate that fetal dihydrotestosterone acts both as a hormone and as a paracrine factor, substantially revising the classic paradigm for fetal male sexual development.
Resumo:
BACKGROUND: Testicular tumours are relatively uncommon in infants and children, accounting for only 1-2% of all paediatric solid tumours. Of these approximately 1.5% are Leydig-cell tumours. Further, activating mutations of the luteinizing hormone receptor gene (LHR), as well as of the G protein genes, such as Gsalpha (gsp) and Gialpha (gip2) subunits, and cyclin-dependent kinase gene 4(CDK4) have been associated with the development of several endocrine neoplasms. AIMS/METHODS: In this report, the clinical variability of Leydig-cell tumours in four children is described. The LHR-, gsp-, gip2- and CDK4 genes were investigated to establish the possible molecular pathogenesis of the variable phenotype of the Leydig-cell tumours. RESULTS: No activating mutations in these genes were found in the four Leydig-cell tumours studied. Therefore, the absence of activating mutations in LHR, as well as in both the 'hot spot' regions for activating mutations within the G-alpha subunits and in the regulatory 'hot spot' on the CDK4 genes in these tumours indicates molecular heterogeneity among Leydig-cell tumours. CONCLUSION: Four children with a variable phenotype caused by Leydig-cell tumours are described. A molecular analysis of all the 'activating' genes and mutational regions known so far was performed, but no abnormalities were found. The lessons learnt from these clinically variable cases are: perform ultrasound early and most importantly, consider discrepancies between testicular swelling, tumour size and androgen production.
Resumo:
Cytochrome P450c17 catalyzes both 17alpha-hydroxylation and 17,20-lyase conversion of 21-carbon steroids to 19-carbon precursors of sex steroids. P450c17 can mediate testosterone biosynthesis via the conversion of pregnenolone to dehydroepiandrosterone (the delta(5) pathway) or via conversion of progesterone to androstenedione (the delta(4) pathway). In many species, the 17, 20-lyase activity of P450c17 for one pathway dominates, reflecting the preferred steroidogenic pathway of that species. All studies of recombinant human P450c17 and of human adrenal microsomes have found high 17, 20-lyase activity only in the delta(5) pathway. Because the 17, 20-lyase activities in both the delta(4) and delta(5) pathways for testicular P450c17 have not been directly compared, however, it is not known if the delta(5) pathway dominates in the human testis. To resolve this issue, we assayed the conversion of 17alpha-hydroxypregnenolone to dehydroepiandrosterone (delta(5) 17, 20-lyase activity) and of 17alpha-hydroxyprogesterone to androstenedione (delta(4) 17, 20-lyase activity) by human fetal testicular microsomes. We obtained apparent Michaelis constant (K(m)) and maximum velocity (V(max)) values of 1.0 microM and 0.73 pmol.min(-1). microg(-1) for delta(5) 17, 20-lyase activity and of 3.5 microM and 0.23 pmol.min(-1). microg(-1) for delta(4) 17, 20-lyase activity. Catalytic efficiencies, expressed as the ratio V(max)/K(m), were 0.73 and 0.066 for the delta(5) and delta(4) reactions, respectively, indicating 11-fold higher preference for the delta(5) pathway. We conclude that the majority of testosterone biosynthesis in the human testis proceeds through the conversion of pregnenolone to dehydroepiandrosterone via the delta(5) pathway.
Resumo:
Previously reported androgen receptor concentrations in rat testis and testicular cell types have varied widely. In the studies reported here a nuclear exchange assay was established in rat testis in which exchange after 86 hours at 4$\sp\circ$C was greater than 85% complete and receptor was stable. Receptor concentration per DNA measured by exchange declined between 15 and 25 days of age in the rat testis, then increased 4-fold during sexual maturation. Proliferation of germ cells which had low receptor concentration appeared to account for the early decline in testicular receptor concentration, whereas increase in receptor number per Sertoli cell between 25 and 35 days of age contributed to the later increase. Increase in Leydig cell number during maturation appeared to account for the remainder of the increase due to the high receptor concentration in these cells. Detailed studies showed that other possible explanations for changes in receptor number (e.g. shifts in receptor concentration between the cytosol and nuclear subcellular compartments or changes in the affinity of the receptor for its ligands) were not likely.^ Androgen receptor dynamics in testicular cells showed rapid, specific uptake of ($\sp3$H) -testosterone that was easily blocked by unlabeled testosterone (RA of 7 nM in both cell types), and medroxyprogesterone acetate (RA of 28 and 16 nM in Sertoli and peritubular cells, respectively), but not as well by the anti-androgens cyproterone acetate (RA of 116 and 68 nM) and hydroxyflutamide (RA of 300 and 180 nM). The affinity of the receptor for the ligand dimethylnortestosterone was similar in the two cell types (K$\rm\sb{d}$ values of 0.78 and 0.71 nM for Sertoli and peritubular cells) and was virtually identical with the affinity of the whole testis receptor (0.89 nM). Medroxyprogesterone acetate and testosterone significantly increased nuclear androgen receptor concentration relative to untreated controls in Sertoli and peritubular cells, whereas hydroxyflutamide and cyproterone acetate did not. Despite the different embryological origins of peritubular and Sertoli cells, their responses to both androgens and anti-androgens were similar. In addition, these studies suggest that peritubular cells are as likely as Sertoli cells to be primary androgen targets. ^
Resumo:
The technique of premature chromosome condensation (PCC) has been used primarily to study interphase chromosomes of somatic cells. In this study, mitotic cells were fused to cells from the mouse testes to examine the chromosomes of germ cells. The testes contain various types of cells, both germinal and nongerminal. In these initial studies, four types of PCC morphologies were observed. Chromosome morphology of the PCC and labeling experiments demonstrated the mouse cell origin of various PCC. Attempts were next made to determine the cell types producing the PCC. Spermatogonia, diplotene spermatocytes, secondary spermatocytes and round spermatids are proposed to be the origin of the PCC morphologies. Some PCC could be banded by G and C banding techniques and the mouse chromosomes identified.^ Studies were subsequently undertaken to evaluate this technique as a method of evaluating damage to germ cells. Testicular cells from irradiated mice were fused to mitotic cells and the PCC examined. Both round spermatids and secondary spermatocytes exhibited chromosome damage in the form of chromatid breaks. A linear correlation was found between the dose of irradiation and the number of breaks per cell. This technique may develop into a useful method for evaluating the clastogenic effect of agents on the germ cells. ^
Resumo:
BACKGROUND Fertility is impaired in many survivors of childhood cancer following treatment. Preservation of fertility after cancer has become a central survivorship concern. Nevertheless, several doctors, patients, and families do not discuss fertility and recommendations for fertility preservation in pediatrics are still lacking. Recommendations based on scientific evidence are needed and before their development we wanted to assess the practice patterns of fertility preservation in Europe. PROCEDURES On behalf of the PanCare network, we sent a questionnaire to pediatric onco-hematology institutions across Europe. The survey consisted of 21 questions assessing their usual practices around fertility preservation. RESULTS One hundred ninety-eight institutional representatives across Europe received the survey and 68 (response rate 34.3%) responded. Pre-treatment fertility counseling was offered by 64 institutions. Counseling was done by a pediatric onco-hematologist in 52% (33/64) and in 32% (20/64) by a team. The majority of institutions (53%) lacked recommendations for fertility preservation. All 64 centers offered sperm banking; eight offered testicular tissue cryopreservation for pre-pubertal males. For females, the possibility of preserving ovarian tissue was offered by 40 institutions. CONCLUSIONS There is a high level of interest in fertility preservation among European centers responding to our survey. However, while most recommended sperm cryopreservation, many also recommended technologies whose efficacy has not been shown. There is an urgent need for evidence-based European recommendations for fertility preservation to help survivors deal with the stressful topic of fertility. Pediatr Blood Cancer 2014;9999:1-5. © 2014 Wiley Periodicals, Inc.
Resumo:
BACKGROUND To report the long-term results of adjuvant treatment with one cycle of modified bleomycin, etoposide, and cisplatin (BEP) in patients with clinical stage I (CS I) nonseminomatous germ-cell tumors (NSGCT) at high risk of relapse. PATIENTS AND METHODS In a single-arm, phase II clinical trial, 40 patients with CS I NSGCT with vascular invasion and/or >50% embryonal cell carcinoma in the orchiectomy specimen received one cycle of adjuvant BEP (20 mg/m(2) bleomycin as a continuous infusion over 24 h, 120 mg/m(2) etoposide and 40 mg/m(2) cisplatin each on days 1-3). Primary end point was the relapse rate. RESULTS Median follow-up was 186 months. One patient (2.5%) had a pulmonary relapse 13 months after one BEP and died after three additional cycles of BEP chemotherapy. Three patients (7.5%) presented with a contralateral metachronous testicular tumor, and three (7.5%) developed a secondary malignancy. Three patients (7.5%) reported intermittent tinnitus and one had grade 2 peripheral polyneuropathy (2.5%). CONCLUSIONS Adjuvant chemotherapy with one cycle of modified-BEP is a feasible and safe treatment of patients with CS I NSGCT at high risk of relapse. In these patients, it appears to be an alternative to two cycles of BEP and to have a lower relapse rate than retroperitoneal lymph node dissection. If confirmed by other centers, 1 cycle of adjuvant BEP chemotherapy should become a first-line treatment option for this group of patients.
Resumo:
Defects of androgen biosynthesis cause 46,XY disorder of sexual development (DSD). All steroids are produced from cholesterol and the early steps of steroidogenesis are common to mineralocorticoid, glucocorticoid and sex steroid production. Genetic mutations in enzymes and proteins supporting the early biosynthesis pathways cause adrenal insufficiency (AI), DSD and gonadal insufficiency. The classic androgen biosynthesis defects with AI are lipoid CAH, CYP11A1 and HSD3B2 deficiencies. Deficiency of CYP17A1 rarely causes AI, and HSD17B3 or SRD5A2 deficiencies only cause 46,XY DSD and gonadal insufficiency. All androgen biosynthesis depends on 17,20 lyase activity of CYP17A1 which is supported by P450 oxidoreductase (POR) and cytochrome b5 (CYB5). Therefore 46,XY DSD with apparent 17,20 lyase deficiency may be due to mutations in CYP17A1, POR or CYB5. Illustrated by patients harboring mutations in SRD5A2, normal development of the male external genitalia depends largely on dihydrotestosterone (DHT) which is converted from circulating testicular testosterone (T) through SRD5A2 in the genital skin. In the classic androgen biosynthetic pathway, T is produced from DHEA and androstenedione/-diol in the testis. However, recently found mutations in AKR1C2/4 genes in undervirilized 46,XY individuals have established a role for a novel, alternative, backdoor pathway for fetal testicular DHT synthesis. In this pathway, which has been first elucidated for the tammar wallaby pouch young, 17-hydroxyprogesterone is converted directly to DHT by 5α-3α reductive steps without going through the androgens of the classic pathway. Enzymes AKR1C2/4 catalyse the critical 3αHSD reductive reaction which feeds 17OH-DHP into the backdoor pathway. In conclusion, androgen production in the fetal testis seems to utilize two pathways but their exact interplay remains to be elucidated.
Resumo:
This study aimed to investigate the male-to-female morphological and physiological transdifferentiation process in rainbow trout (Oncorhynchus mykiss) exposed to exogenous estrogens. The first objective was to elucidate whether trout develop intersex gonads under exposure to low levels of estrogen. To this end, the gonads of an all-male population of fry exposed chronically (from 60 to 136 days post fertilization--dpf) to several doses (from environmentally relevant 0.01 µg/L to supra-environmental levels: 0.1, 1 and 10 µg/L) of the potent synthetic estrogen ethynylestradiol (EE2) were examined histologically. The morphological evaluations were underpinned by the analysis of gonad steroid (testosterone, estradiol and 11-ketotestosterone) levels and of brain and gonad gene expression, including estrogen-responsive genes and genes involved in sex differentiation in (gonads: cyp19a1a, ER isoforms, vtg, dmrt1, sox9a2; sdY; cyp11b; brain: cyp19a1b, ER isoforms). Intersex gonads were observed from the first concentration used (0.01 µg EE2/L) and sexual inversion could be detected from 0.1 µg EE2/L. This was accompanied by a linear decrease in 11-KT levels, whereas no effect on E2 and T levels was observed. Q-PCR results from the gonads showed downregulation of testicular markers (dmrt1, sox9a2; sdY; cyp11b) with increasing EE2 exposure concentrations, and upregulation of the female vtg gene. No evidence was found for a direct involvement of aromatase in the sex conversion process. The results from this study provide evidence that gonads of male trout respond to estrogen exposure by intersex formation and, with increasing concentration, by morphological and physiological conversion to phenotypic ovaries. However, supra-environmental estrogen concentrations are needed to induce these changes.
Resumo:
BACKGROUND Noninflammatory alopecia is a frequent problem in dogs. Estrogen-induced alopecia is well described in dogs, with estrogen producing testicular tumors and canine female hyperestrogenism. OBJECTIVES To increase awareness that extensive alopecia in dogs can be caused by exposure to estradiol gel used by owners to treat their postmenopausal symptoms. ANIMALS Skin biopsies from five dogs with extensive alopecia were examined. METHODS Owners were asked for a thorough case history, including possible exposure to an estradiol gel. Complete blood work and serum chemistry panel analysis were performed to investigate possible underlying causes. Formalin-fixed skin biopsy samples were obtained from lesional skin and histopathology was performed. RESULTS All owners confirmed the use of a transdermal estradiol gel and close contact with the affected dogs before development of alopecia. Histopathologic examination showed a similar picture in all five dogs. Most hair follicles were predominantly either in kenogen or telogen and hair follicle infundibula showed mild to moderate dilation. Hair regrowth was present in all five dogs after the exposure to the estradiol gel was stopped or minimized. Blood work and serum chemistry panel were within normal limits in all cases. One dog had elevated estradiol concentrations, whereas in another dog estradiol concentrations were within normal limits. CONCLUSION AND CLINICAL IMPORTANCE Alopecia can occur after contact with a transdermal gel used as treatment for postmenopausal symptoms in women. Estradiol gel used by female owners therefore represents a possible cause for noninflammatory alopecia in dogs. Estradiol concentrations are not necessarily elevated in affected dogs.
Resumo:
Administration of gonadotropins or testosterone (T) will maintain qualitatively normal spermatogenesis and fertility in hypophysectomized (APX) rats. However, quantitative maintenance of the spermatogenic process in APX rats treated with T alone or in combination with follicle stimulating hormone (FSH) has not been demonstrated. Studies reported here were conducted to determine whether it would be possible to increase intratesticular testosterone (ITT) levels in APX rats to those found in normal animals by administration of appropriate amounts of testosterone propionate (TP) and if under these conditions spermatogenesis can be maintained quantitatively. Quantitative analysis of spermatogenesis was performed on stages VI and VII of the spermatogenic cycle utilizing criteria of Leblond and Clermont (1952) all cell types were enumerated. In a series of experiments designed to investigate the effects of T on spermatogenesis, TP was administered to 60 day old APX rats twice daily for 30 days in doses ranging from 0.6 to 15 mg/day or from 0.6 to 6.0 mg/day in combination with FSH. The results of this study demonstrate that the efficiency of transformation of type A to type B spermatogonia and the efficacy of the meiotic prophase are related to ITT levels, and that quantitatively normal completion of the reduction division requires normal ITT levels. The ratio of spermatids to spermatocytes in the vehicle-treated APX rats was 1:1.38; in the APX rats treated with 15 mg of TP it was 1:4.0 (the theoretically expected number). This study is probably the first to demonstrate: (1) the pharmacokinetics of TP, (2) the profile and quantity of T-immunoactivity in both serum and testicular tissue of APX and IC rats as well as APX rats treated with TP alone or in combination with FSH, (3) the direct correlation of serum T and ITT levels in treated APX rats (r = 0.9, p < 0.001) as well as in the IC rats (r = 0.9, p < 0.001), (4) the significant increase in the number of Type B spermatogonia, preleptotene and pachytene spermatocytes and round spermatids in TP-treated APX rats, (5) the correlation of the number of round spermatids formed in IC rats to ITT levels (r = 0.9, p < 0.001), and (6) the correlation of the quantitative maintenance of spermatogenesis with ITT levels (r = 0.7, p < 0.001) in the testes of TP-treated APX rats. These results provide direct experimental evidence for the key role of T in the spermatogenic process. ^
Resumo:
Numerous genes expressed in placenta or testis localize to the X-chromosome. Both tissues undergo specialized X-chromosome inactivation (imprinted paternal inactivation in placenta and MSCI in testicular germ cells). When the X-chromosome is duplicated or improperly inactivated, defects in placentation, growth and spermatogenesis are noted, suggesting tight control of X-chromosome gene dosage is important for reproduction. ^ Esx1 is a mouse homeobox gene on the X-chromosome with expression limited to extraembryonic tissues and testicular germ cells. Here, we examine the effects of increased and decreased Esx1 dosage on placental and testicular development, the role of genetic background on Esx1 function and characterize the human orthologue of Esx1. ^ Previously, by targeted deletion, Esx1 was shown to be an X-chromosome imprinted regulator of placental development and fetal growth. We show C57Bl6-congenic Esx1 mutants display a more severe phenotype with decreased viability and that the 129 genetic background contains dominant modifier genes that enhance Esx1 mutant survival. ^ Varying Esx1 dosage impacts testicular germ cell development. Esx1 hemizygous null mice are fertile, but we show their testes are two-thirds normal size. To examine the effect of increased Esx1 dosage, Esx1 BAC transgenic mice were generated. Increased Esx1 dosage results in dramatic deficits in testicular germ cell development, leading to sterility and testes one-fourth normal size. We show germ cell loss occurs through apoptosis, begins between postnatal day 6 and 10, and that no spermatocytes complete meiosis. Interestingly, increased Esx1 dosage in testes mimics germ cell loss seen in Klinefelter's (XXY) mice and humans and may represent a molecular mechanism for the infertility characteristic of this syndrome. ^ Esx1 dosage impacts reproductive fitness when maternally transmitted. Three transgenic founder females were unable to transmit the transgene to live offspring, but did produce transgenic pups at earlier stages. Additionally, one line of Esx1 BAC transgenic mice demonstrated decreased embryo size and fitness when the transgene is inherited compared to wild type littermates. ^ It is possible that Esx1 plays a role in human disorders of pregnancy, growth and spermatogenesis. Therefore, we cloned and characterized ESX1L (human Esx1), and show it is expressed in human testis and placenta. ^
Resumo:
Chromatin condensation within the nucleus of developing spermatids involves replacement of histones by transition proteins, which are in turn replaced by protamines. The importance of transition proteins in the complex process of spermiogenesis has, to date, been only speculative. This study sought to investigate the extent to which transition proteins are essential or have redundant functions by characterizing sperm produced in mice expressing all combinations of Tnp-null alleles. Results from breeding trials of 8 weeks duration revealed that, on average, wildtype males produced about 14 offspring whereas TP2 and TP1 single-knockout males produced about 8 and 1 offspring, respectively, demonstrating their subfertility. Genotypes with less than two Tnp wildtype alleles, as well as double-knockout mutants, were completely infertile. Sperm from males with impaired fertility had poor progressive motility, heterogeneous chromatin condensation, incompletely processed protamine 2 and head and tail abnormalities. Generally, as the number of Tnp-null alleles increased so did the severity of abnormalities. However, specific morphological abnormalities were associated with the absence of an individual TP. Studies which sought to identify possible root causes for abnormalities in thiol-rich sperm structures revealed no differences in thiol content or sulfhydryl oxidation status within the nucleus but nuclei and tails from single-knockout mutants were severely disrupted following thiol reduction. Binding of fluorescent dyes to DNA was normal in sperm recovered from caput but abnormal in cauda epididymal sperm from TP1 knockouts and infertile double mutants. Injection of cauda epididymal sperm from double knockouts into oocytes produced very few offspring; however, after injection with testicular sperm, the efficiency was no different from wildtype. These results suggest DNA structural alterations or degradation during epididymal transport of sperm resulting in a diminished capacity of the paternal DNA of these sperm to produce offspring. The overall importance of transition proteins for normal chromatin condensation and production of fertile sperm has been demonstrated. Furthermore, identification of specific morphological abnormalities associated with the absence of an individual transition protein provides new evidence that the proteins are not completely redundant and each fulfills some unique function. ^