874 resultados para Television acting
Resumo:
During thermo regulation in the bearded dragon Pogona barbata, heart rate when heating is significantly faster than when cooling at any given body temperature (heart rate hysteresis), resulting in faster rates of heating than cooling. However, the mechanisms that control heart rate during heating and cooling are unknown. The aim of this study was to test the hypothesis that changes in cholinergic and adrenergic tone on the heart are responsible for the heart rate hysteresis during heating and cooling in P. barbata. Heating and cooling trials were conducted before and after the administration of atropine, a muscarinic antagonist, and sotalol, a beta-adrenergic antagonist. Cholinergic and beta-adrenergic blockade did not abolish the heart rate hysteresis, as the heart rate during heating was significantly faster than during cooling in all cases. Adrenergic tone was extremely high (92.3%) at the commencement of heating, and decreased to 30.7% at the end of the cooling period. Moreover, in four lizards there was an instantaneous drop in heart rate (up to 15 beats min(-1)) as the heat source was switched off, and this drop in heart rate coincided with either a drop in beta-adrenergic tone or an increase in cholinergic tone. Rates of heating were significantly faster during the cholinergic blockade, and least with a combined cholinergic and beta-adrenergic blockade. The results showed that cholinergic and beta-adrenergic systems are not the only control mechanisms acting on the heart during heating and cooling, but they do have a significant effect on heart rate and on rates of heating and cooling.
Resumo:
1 Previous studies have demonstrated that chronic pre-synaptic inhibition of transmitter release by morphine evokes a counter-adaptive response in the sympathetic nerve terminals that manifests itself as an increase in transmitter release during acute withdrawal. In the present study we examined the possibility that other pre-synaptically acting drugs such as clonidine also evoke a counter-adaptive response in the sympathetic nerve terminals. 2 In chronically saline treated (CST) preparations, clonidine (0.5 muM) completely abolished evoked transmitter release from sympathetic varicosities bathed in an extracellular calcium concentration ([Ca2+](o)) of 2 mM. The inhibitory effect of clonidine was reduced by increasing [Ca2+](o) from 2 to 4 mM and the stimulation frequency from 0.1 to 1 Hz. 3 The nerve terminal impulse (NTI) was not affected by concentrations of clonidine that completely abolished evoked transmitter release. 4 Sympathetic varicosities developed a tolerance to clonidine (0.5 muM) following 7-9 days of chronic exposure to clonidine. 5 Acute withdrawal of preparations following chronic clonidine treatment (CCT) resulted in a significant (P
Resumo:
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alpha beta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alpha beta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alpha beta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin las an allosterically acting 'competitive' antagonist) binds to this residue.
A highly conserved c-fms gene intronic element controls macrophage-specific and regulated expression
Resumo:
The c fins gene encodes the receptor for macrophage colony-stimulating factor-1. This gene is expressed selectively in the macrophage cell lineage. Previous studies have implicated sequences in intron 2 that control transcript elongation in tissue-specific and regulated expression of c -fms. Four macrophage-specific deoxyribonuclease I (DNase I)-hypersensitive sites (DHSS) were identified within mouse intron 2. Sequences of these DHSS were found to be highly conserved compared with those in the human gene. A 250-bp region we refer to as the fins intronic regulatory element (FIRE), which is even more highly conserved than the c-fins proximal promoter, contains many consensus binding sites for macrophage-expressed transcription factors including Spl, PU.1, and C/EBP. FIRE was found to act as a macrophage-specific enhancer and as a promoter with an antisense orientation preference in transient transfections. In stable transfections of the macrophage line RAW264, as well as in clones selected for high and low-level c -fms mRNA expression, the presence of intron 2 increased the frequency and level of expression of reporter genes compared with those attained using the promoter alone. Removal of FIRE abolished reporter gene expression, revealing a suppressive activity in the remaining intronic sequences. Hence, FIRE is shown to be a key regulatory element in the fins gene.
Resumo:
An experimental study has been carried out for the gas-liquid two-phase flow in a packed bed simulating conditions of the gas and liquid flows in the lower part of blast furnace. The localised liquid flow phenomenon in presence of gas cross flow, which usually occurs around the cohesive zone and raceway in blast furnace, was investigated in detail. Such liquid flow is characterised in terms of liquid shift distance or liquid shift angle that can effectively be measured by the experiments involved in the current study. It is found that liquid shift angle does not significantly increase or decrease with different packing depth. This finding supports the hypothesis of the force balance model where a vectorial relationship among acting forces, i.e. gas drag force, gravitational force and solid-liquid friction force, and liquid shift angle does exist. Liquid shift angle is inversely proportional to particle size and liquid density, and proportional to square of gas superficial velocity, but is almost independent on liquid flowrate and liquid viscosity. The gas-liquid drag coefficient, an important aspect for quantifying the interaction between gas and liquid flows, was conceptually modified based on the discrete feature of liquid flow through a packed bed and evaluated by the combined theoretical and experimental investigation. Experimental measurements suggest that the gas-liquid drag coefficient is approximately a constant (C-DG(')=5.4+/-1.0) and is independent on liquid properties, gas velocity and packing structure. The result shows a good agreement with previous experimental data and prediction of the existing liquid flow model.
Resumo:
Delivery of endocytosed macromolecules to lysosomes occurs by means of direct fusion of late endosomes with lysosomes. This has been formally demonstrated in a cell-free content mixing assay using late endosomes and lysosomes from rat liver. There is evidence from electron microscopy Studies that the same process occurs in intact cells. The fusion process results in the formation of hybrid organelles from which lysosomes are reformed. The discovery of the hybrid organelle has opened up three areas of investigation: (i) the mechanism of direct fusion of late endosomes and lysosomes, (ii) the mechanism of re-formation of lysosomes from the hybrid organelle, and (iii) the function of the hybrid organelle. Fusion has analogies with homotypic vacuole fusion in yeast. It requires syntaxin 7 as part of the functional trans-SNARE [SNAP receptor, where SNAP is soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein] complex and the release of lumenal calcium to achieve membrane fusion. Reformation of lysosomes from the hybrid organelle occurs by a maturation process involving condensation of lumenal content and probably removal of some membrane proteins by vesicular traffic. Lysosomes may thus be regarded as a type of secretory granule, storing acid hydrolases in between fusion events with late endosomes. The hybrid organelle is predicted to function as a 'cell stomach', acting as a major site of hydrolysis of endocytosed macromolecules.
Resumo:
The contribution of the UV component of sunlight to the development of skin cancer is widely acknowledged, although the molecular mechanisms that are disrupted by UV radiation (UVR) resulting in the loss of normal growth controls of the epidermal stem cell keratinocytes and melanocytes is still poorly understood. alpha-Melanocyte stimulating hormone (alpha-MSH), acting via its receptor MC1, has a key role in skin pigmentation and the melanizing response after exposure to UVR. The cell cycle inhibitor p16/CDKN2A also appears to have an important function in a cell cycle checkpoint response in skin after exposure to UVR. Both of these genes have been identified as risk factors in skin cancer, MC1R variants are associated with increased risk to both melanoma and nonmelanoma skin cancers, and p16/CDKN2A with increased risk of melanoma. Here we demonstrate that the increased expression of p16 after exposure to sub-erythemal doses of UVR is potentiated by alpha-MSH, a ligand for MC1R, and this effect is mimicked by cAMP, the intracellular mediator of alpha-MSH signaling via the MC1 receptor. This link between p16 and MC1R may provide a molecular basis for the increased skin cancer risk associated with MC1R polymorphisms.
Resumo:
The selective loss of neurones in a range of neurodegenerative diseases is widely thought to involve the process of excitotoxicity, in which glutamate-mediated neuronal killing is elaborated through the excessive stimulation of cell-surface receptors. Every such disease exhibits a distinct regional and subregional pattern of neuronal loss. so processes must be locally triggered to different extents to account for this. We have studied several mechanisms which could lead to excitotoxic glutamate pathophysiology and compared them in different diseases. Our data suggest that glutamate can reach toxic extracellular levels in Alzheimer disease by malfunctions in cellular transporters, and that the toxicity may be exacerbated by continued glutamate release from presynaptic neurones acting on hypersensitive postsynaptic receptors. Thus the excitotoxicity is direct. In contrast, alcoholic brain damage arises in regions where GABA-mediated inhibition is deficient, and fails properly to dampen trans-synaptic excitation, Thus the excitotoxicity is indirect. A variety of such mechanisms is possible, which may combine in different ways.
Resumo:
The factors that control replication rate of the intracellular bacterium Wolbachia pipientis in its insect hosts are unknown and difficult to explore, given the complex interaction of symbiont and host genotypes. Using a strain of Wolbachia that is known to over-replicate and shorten the lifespan of its Drosophila melanogaster host, we have tracked the evolution of replication control in both somatic and reproductive tissues in a novel host/Wolbachia association. After transinfection (the transfer of a Wolbachia strain into a different species) of the over-replicating Wolbachia popcorn strain from D. metanogaster to Drosophila simulans, we demonstrated that initial high densities in the ovaries were in excess of what was required for perfect maternal transmission, and were likely causing reductions in reproductive fitness. Both densities and fitness costs associated with ovary infection rapidly declined in the generations after transinfection. The early death effect in D. simulans attenuated only slightly and was comparable to that induced in D. metanogaster. This study reveals a strong host involvement in Wolbachia replication rates, the independence of density control responses in different tissues, and the strength of natural selection acting on reproductive fitness.
Resumo:
l-(BETS)2FeCl4 undergoes transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe31 magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. We show how He can be extracted from the observed splitting of the Shubnikov–de Haas frequencies. We predict the field range for field-induced superconductivity in other materials.
Resumo:
Two of the best understood somatic cell mRNA cytoplasmic trafficking elements are those governing localization of beta-actin and myelin basic protein mRNAs. These cis-acting elements bind the trans-acting factors fibroblast ZBP-1 and hnRNP A2, respectively. It is not known whether these elements fulfil other roles in mRNA metabolism. To address this question we have used Edman sequencing and western blotting to identify six rat brain proteins that bind the beta-actin element (zipcode). All are known RNA-binding proteins and differ from ZBP-1. Comparison with proteins that bind the hnRNP A2 and AU-rich response elements, A2RE/A2RE11 and AURE, showed that AURE and zipcode bind a similar set of proteins that does not overlap with those that bind A2RE11. The zipcode-binding protein, KSRP, and hnRNP A2 were selected for further study and were shown by confocal immunolluorescence microscopy to have similar distributions in the central nervous system, but they were found in largely separate locations in cell nuclei. In the cytoplasm of cultured oligodendrocytes they were segregated into separate populations of cytoplasmic granules. We conclude that not only may there be families of trans-acting factors for the same cis-acting element, which are presumably required at different stages of mRNA processing and metabolism, but independent factors may also target different and multiple RNAs in the same cell.
Heterogeneous nuclear ribonucleoprotein A3, a novel RNA trafficking response element-binding protein
Resumo:
The cis-acting response element, A2RE, which is sufficient for cytoplasmic mRNA trafficking in oligodendrocytes, binds a small group of rat brain proteins. Predominant among these is heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a trans-acting factor for cytoplasmic trafficking of RNAs bearing A2RE-like sequences. We have now identified the other A2RE-binding proteins as hnRNP A1/A1(B), hnRNP B1, and four isoforms of hnRNP A3. The rat and human hnRNP A3 cDNAs have been sequenced, revealing the existence of alternatively spliced mRNAs. In Western blotting, 38-, 39-, 41 -, and 41.5-kDa components were all recognized by antibodies against a peptide in the glycine-rich region of hnRNP A3, but only the 41- and 41.5-kDa bands bound antibodies to a 15-residue N-terminal peptide encoded by an alternatively spliced part of exon 1. The identities of these four proteins were verified by Edman sequencing and mass spectral analysis of tryptic fragments generated from electrophoretically separated bands. Sequence-specific binding of bacterially expressed hnRNP A3 to A2RE has been demonstrated by biosensor and UV cross-linking electrophoretic mobility shift assays. Mutational analysis and confocal microscopy data support the hypothesis that the hnRNP A3 isoforms have a role in cytoplasmic trafficking of RNA.
Resumo:
Adaptation and reproductive isolation, the engines of biological diversity, are still elusive when discussing the genetic bases of speciation. Namely, the number of genes and magnitude of selection acting positively or negatively on genomic traits implicated in speciation is contentious. Here, we describe the first steps of an ongoing research program aimed at understanding the genetic bases of population divergence and reproductive isolation in the lake whitefish (Coregonus clupeaformis). A preliminary linkage map originating from a hybrid cross between dwarf and normal ecotypes is presented, whereby some of the segregating AFLP markers were found to be conserved among natural populations. Maximum-likelihood was used to estimate hybrid indices from non-diagnostic markers at 998 AFLP loci. This allowed identification of the most likely candidate loci that have been under the influence of selection during the natural hybridisation of whitefish originating from different glacial races. As some of these loci could be identified on the linkage map, the possibility that selection of traits in natural populations may eventually be correlated to specific chromosomal regions was demonstrated. The future prospects and potential of these approaches to elucidate the genetic bases of adaptation and reproductive isolation among sympatric ecotypes of lake whitefish is discussed.
Resumo:
Experimental studies have been undertaken, involving in situ observations of the interaction between cover gas mixtures and molten magnesium. It has been shown that, in the presence of sulphur hexafluoride (SF6), the contact angle between solid MgO and molten magnesium is reduced, resulting in the wetting of MgO by magnesium metal. In contrast, it was observed that the absence of SF6 results in a large contact angle, poor wetting of the MgO by magnesium metal and a non-adherent surface film. It is proposed that the formation of an adherent, protective surface film under a cover gas mixture containing SF6 is due to capillary forces acting within the film.
Resumo:
This study examined the relationship of race and rural/urban setting to physical, behavioral, psychosocial, and environmental factors associated with physical activity. Subjects included 1,668 eighth-grade girls from 31 middle schools: 933 from urban settings, and 735 from rural settings. Forty-six percent of urban girls and 59% of rural girls were Black. One-way and two-way ANOVAs with school as a covariate were used to analyze the data. Results indicated that most differences were associated with race rather than setting. Black girls were less active than White girls, reporting significantly fewer 30-minute blocks of both vigorous and moderate-to-vigorous physical activity. Black girls also spent more time watching television, and had higher BMIs and greater prevalence of overweight than White girls. However, enjoyment of physical education and family involvement in physical activity were greater among Black girls titan White girls. Rural White girls and urban Black girls had more favorable attitudes toward physical activity. Access to sports equipment, perceived safety of neighborhood, and physical activity self-efficacy were higher in White girls than Black girls.