965 resultados para TIGHT GAS. Low permeability. Hydraulic fracturing. Reservoir modeling. Numerical simulation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thesis describes a programme of research designed to identify concretes for application at cryogenic temperature, in particular for storage of Liquefield Natural Gas which is maintained at a temperature of -165oC. The programme was undertaken in two stages. Stage 1 involved screening tests on seventeen concrete mixes to investigate the effects of strength grade (and water/cement ratio), air entrainment, aggregate type and cement type. Four mixes were selected on the basis of low temperature strength, residual strength after thermal cycling and permeability at ambient temperature. In Stage 2 the selected mixes were subjected to a comprehensive range of tests to measure those properties which determine the leak tightness of a concrete tank at temperatures down to -165oC. These included gas permeability; tensile strength, strain capacity, thermal expansion coefficient and elastic modulus, which in combination provide a measure of resistance to cracking; and bond to reinforcement, which is one of the determining factors regarding crack size and spacing. The results demonstrated that the properties of concrete were generally enhanced at cryogenic temperature, with reduced permeability, reduced crack proneness and, by virtue of increased bond to reinforcement, better control of cracking should it occur. Of the concretes tested, a lightweight mix containing sintered PFA aggregate exhibited the best performance at ambient and cryogenic temperature, having appreciably lower permeability and higher crack resistance than normal weight concretes of the same strength grade. The lightweight mix was most sensitive to thermal cycling, but there was limited evidence that this behaviour would not be significant if the concrete was prestressed. Relationships between various properties have been identified, the most significant being the reduction in gas permeability with increasing strain capacity. The structural implications of the changing properties of the concrete have also been considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 'ion-trapping' hypothesis suggests that the intracellular concentration of acidic non-steroidal anti-inflammatory drugs in gastric epithelial cells could be much higher than in the gastric lumen, and that such accumulation could contribute to their gastrotoxicity. Our aim was to examine the effect of the pH of the apical medium on the apical to basal transfer of the acidic drug indomethacin (pK a 4.5) across a gastric mucous epithelial cell monolayer, and to determine whether indomethacin accumulated in cells exposed to a low apical pH. Guinea-pig gastric mucous epithelial cells were grown on porous membrane culture inserts (Transwells®) for 72 h. Transfer and accumulation of [ 14C] indomethacin were assessed by scintillation counting. Transfer of [ 3H]mannitol and measurement of trans-epithelial electrical resistance were used to assess integrity of the monolayer. Distribution of [ 14C] urea was used to estimate the intracellular volume of the monolayer. The monolayer was not disrupted by exposure of the apical face to media of pH ≥ 3, or by indomethacin. Transfer of indomethacin (12 μM) to the basal medium increased with decreasing apical medium pH. The apparent permeability of the undissociated acid was estimated to be five times that of the anion. The intracellular concentration of indomethacin was respectively 5.3, 4.1 and 4.3 times that in the apical medium at pH 5.5, 4.5 and 3.0. In conclusion, this study represents the first direct demonstration that indomethacin accumulates in gastric epithelial cells exposed to low apical pH. However, accumulation of indomethacin was moderate and the predictions of the ion-trapping hypothesis were not met, probably due to the substantial permeability of anionic indomethacin across membranes. © 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Large-scale introduction of Organic Solar Cells (OSCs) onto the market is currently limited by their poor stability in light and air, factors present in normal working conditions for these devices. Thus, great efforts have to be undertaken to understand the photodegradation mechanisms of their organic materials in order to find solutions that mitigate these effects. This study reports on the elucidation of the photodegradation mechanisms occurring in a low bandgap polymer, namely, Si-PCPDTBT (poly[(4,4′-bis(2-ethylhexyl)dithieno[3,2-b:2′,3′-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5′-diyl]). Complementary analytical techniques (AFM, HS-SPME-GC-MS, UV-vis and IR spectroscopy) have been employed to monitor the modification of the chemical structure of the polymer upon photooxidative aging and the subsequent consequences on its architecture and nanomechanical properties. Furthermore, these different characterization techniques have been combined with a theoretical approach based on quantum chemistry to elucidate the evolution of the polymer alkyl side chains and backbone throughout exposure. Si-PCPDTBT is shown to be more stable against photooxidation than the commonly studied p-type polymers P3HT and PCDTBT, while modeling demonstrated the benefits of using silicon as a bridging atom in terms of photostability. (Figure Presented).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Петър Господинов, Добри Данков, Владимир Русинов, Стефан Стефанов - Изследвано е цилиндрично течение на Кует за разреден газ между два въртящи се цилиндъра. Получени са профилите на налягането, скоростта и температурата по метода на прякото статистическо моделиране (DSMC) и чрез числено решаване на уравненията на Навие-Стокс за свиваем флуид. Резултатите сочат много добро съвпадение за малки числа на Кнудсен Kn = 0.02. Показано е, че при различни кинематични гранични условия, газът изостава или избързва спрямо скоростта на стената, или има поведение на твърдо еластично тяло. Получените резултати са важни при решаването на неравнинни, задачи от микрофлуидиката с отчитане на ефектите на кривината.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For micro gas turbines (MGT) of around 1 kW or less, a commercially suitable recuperator must be used to produce a thermal efficiency suitable for use in UK Domestic Combined Heat and Power (DCHP). This paper uses computational fluid dynamics (CFD) to investigate a recuperator design based on a helically coiled pipe-in-pipe heat exchanger which utilises industry standard stock materials and manufacturing techniques. A suitable mesh strategy was established by geometrically modelling separate boundary layer volumes to satisfy y + near wall conditions. A higher mesh density was then used to resolve the core flow. A coiled pipe-in-pipe recuperator solution for a 1 kW MGT DCHP unit was established within the volume envelope suitable for a domestic wall-hung boiler. Using a low MGT pressure ratio (necessitated by using a turbocharger oil cooled journal bearing platform) meant unit size was larger than anticipated. Raising MGT pressure ratio from 2.15 to 2.5 could significantly reduce recuperator volume. Dimensional reasoning confirmed the existence of optimum pipe diameter combinations for minimum pressure drop. Maximum heat exchanger effectiveness was achieved using an optimum or minimum pressure drop pipe combination with large pipe length as opposed to a large pressure drop pipe combination with shorter pipe length. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A two-phase three-dimensional computational model of an intermediate temperature (120--190°C) proton exchange membrane (PEM) fuel cell is presented. This represents the first attempt to model PEM fuel cells employing intermediate temperature membranes, in this case, phosphoric acid doped polybenzimidazole (PBI). To date, mathematical modeling of PEM fuel cells has been restricted to low temperature operation, especially to those employing Nafion ® membranes; while research on PBI as an intermediate temperature membrane has been solely at the experimental level. This work is an advancement in the state of the art of both these fields of research. With a growing trend toward higher temperature operation of PEM fuel cells, mathematical modeling of such systems is necessary to help hasten the development of the technology and highlight areas where research should be focused.^ This mathematical model accounted for all the major transport and polarization processes occurring inside the fuel cell, including the two phase phenomenon of gas dissolution in the polymer electrolyte. Results were presented for polarization performance, flux distributions, concentration variations in both the gaseous and aqueous phases, and temperature variations for various heat management strategies. The model predictions matched well with published experimental data, and were self-consistent.^ The major finding of this research was that, due to the transport limitations imposed by the use of phosphoric acid as a doping agent, namely low solubility and diffusivity of dissolved gases and anion adsorption onto catalyst sites, the catalyst utilization is very low (∼1--2%). Significant cost savings were predicted with the use of advanced catalyst deposition techniques that would greatly reduce the eventual thickness of the catalyst layer, and subsequently improve catalyst utilization. The model also predicted that an increase in power output in the order of 50% is expected if alternative doping agents to phosphoric acid can be found, which afford better transport properties of dissolved gases, reduced anion adsorption onto catalyst sites, and which maintain stability and conductive properties at elevated temperatures.^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite's Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year-round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration-to-recharge rates were elevated, while low evapotranspiration-to-recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reservoirs that present highly viscous oils require methods to aid in their recovery to the surface. The elev ated oil viscosity hinders its flow through porous media and conventional recovery methods have not obtained significant efficiency. As such, the injection of steam into the reservoir through an injection well has been the most widely used method of therma l recovery, for it allows elevated volumes of recovery due to the viscosity reduction of the oil, facilitating the oil’s mobility within the rock formation and consequently into the production well where it will be exploited. On the other hand, the injecti on of vapor not only affects the fluids found in the rock pores, but the entire structure that composes the well where it is injected due to the high temperatures used in the process. This temperature increment is conducted to the cement, found in the annu lus, responsible for the isolation of the well and the well casing. Temperatures above 110 ̊C create new fazes rich in calcium in the cement matrix, resulting in the reduction of its permeability and the consequential phenomenon of mechanical resistance ret rogression. These alterations generate faults in the cement, reducing the well’s hydraulic isolation, creating insecurity in the operations in which the well will be submitted as well as the reduction of its economic life span. As a way of reducing this re trograde effect, this study has the objective of evaluating the incorporation of rice husk ash as a mineral additive substitute of silica flour , commercially utilized as a source of silica to reduce the CaO/SiO 2 ratio in the cement pastes submitted to high temperatures in thermal recovery. Cement pastes were formulated containing 20 and 30% levels of ash, apart from the basic paste (water + cement) and a reference paste (water + cement + 40% silica flour) for comparison purposes. The tests were executed th rough compression resistance tests, X - Ray diffraction (XRD) techniques, thermogravimetry (TG), scanning electron microscopy (SEM) and chemical anal ysis BY X - ray fluorescence (EDS) on the pastes submitted to cure at low temperatures (45 ̊C) for 28 days following a cure at 280 ̊C and a pressure of 2,000 PSI for 3 days, simulating vapor injection. The results obtained show that the paste containing 30% r ice shell ash is satisfactory, obtaining mechanical resistance desired and equivalent to that of the paste containing 40% silica flour, since the products obtained were hydrated with low CaO/SiO 2 ratio, like the Tobermorita and Xonotlita fases, proving its applicability in well subject to vapor injection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electron beam-induced deposition (EBID) is a direct write process where an electron beam locally decomposes a precursor gas leaving behind non-volatile deposits. It is a fast and relatively in-expensive method designed to develop conductive (metal) or isolating (oxide) nanostructures. Unfortunately the EBID process results in deposition of metal nanostructures with relatively high resistivity because the gas precursors employed are hydrocarbon based. We have developed deposition protocols using novel gas-injector system (GIS) with a carbon free Pt precursor. Interconnect type structures were deposited on preformed metal architectures. The obtained structures were analysed by cross-sectional TEM and their electrical properties were analysed ex-situ using four point probe electrical tests. The results suggest that both the structural and electrical characteristics differ significantly from those of Pt interconnects deposited by conventional hydrocarbon based precursors, and show great promise for the development of low resistivity electrical contacts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as

`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol

particles and greenhouse gases (GHGs) as responses to their surrounding environments.

While the signicance of quantifying the exchange rates of GHGs and atmospheric

aerosol particles between the terrestrial biosphere and the atmosphere is

hardly questioned in many scientic elds, the progress in improving model predictability,

data interpretation or the combination of the two remains impeded by

the lack of precise framework elucidating their dynamic transport processes over a

wide range of spatiotemporal scales. The diculty in developing prognostic modeling</p>

tools to quantify the source or sink strength of these atmospheric substances

can be further magnied by the fact that the climate system is also sensitive to the

feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,

the emergent need is to reduce uncertainties when assessing this complex and dynamic

feedback cycle that is necessary to support the decisions of mitigation and

adaptation policies associated with human activities (e.g., anthropogenic emission

controls and land use managements) under current and future climate regimes.

With the goal to improve the predictions for the biosphere-atmosphere exchange

of biologically active gases and atmospheric aerosol particles, the main focus of this

dissertation is on revising and up-scaling the biotic and abiotic transport processes

from leaf to canopy scales. The validity of previous modeling studies in determining

iv

the exchange rate of gases and particles is evaluated with detailed descriptions of their

limitations. Mechanistic-based modeling approaches along with empirical studies

across dierent scales are employed to rene the mathematical descriptions of surface

conductance responsible for gas and particle exchanges as commonly adopted by all

operational models. Specically, how variation in horizontal leaf area density within

the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes

and thereby the ultrane particle collection eciency at the leaf/branch scale

is explored using wind tunnel experiments with interpretations by a porous media

model and a scaling analysis. A multi-layered and size-resolved second-order closure

model combined with particle

uxes and concentration measurements within and

above a forest is used to explore the particle transport processes within the canopy

sub-layer and the partitioning of particle deposition onto canopy medium and forest

oor. For gases, a modeling framework accounting for the leaf-level boundary layer

eects on the stomatal pathway for gas exchange is proposed and combined with sap

ux measurements in a wind tunnel to assess how leaf-level transpiration varies with

increasing wind speed. How exogenous environmental conditions and endogenous

soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and

below-ground water dynamics in the soil-plant system and shape plant responses

to droughts is assessed by a porous media model that accommodates the transient

water

ow within the plant vascular system and is coupled with the aforementioned

leaf-level gas exchange model and soil-root interaction model. It should be noted

that tackling all aspects of potential issues causing uncertainties in forecasting the

feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single

dissertation but further research questions and opportunities based on the foundation

derived from this dissertation are also brie

y discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within Canada there are more than 2.5 million bundles of spent nuclear fuel with another approximately 2 million bundles to be generated in the future. Canada, and every country around the world that has taken a decision on management of spent nuclear fuel, has decided on long-term containment and isolation of the fuel within a deep geological repository. At depth, a deep geological repository consists of a network of placement rooms where the bundles will be located within a multi-layered system that incorporates engineered and natural barriers. The barriers will be placed in a complex thermal-hydraulic-mechanical-chemical-biological (THMCB) environment. A large database of material properties for all components in the repository are required to construct representative models. Within the repository, the sealing materials will experience elevated temperatures due to the thermal gradient produced by radioactive decay heat from the waste inside the container. Furthermore, high porewater pressure due to the depth of repository along with possibility of elevated salinity of groundwater would cause the bentonite-based materials to be under transient hydraulic conditions. Therefore it is crucial to characterize the sealing materials over a wide range of thermal-hydraulic conditions. A comprehensive experimental program has been conducted to measure properties (mainly focused on thermal properties) of all sealing materials involved in Mark II concept at plausible thermal-hydraulic conditions. The thermal response of Canada’s concept for a deep geological repository has been modelled using experimentally measured thermal properties. Plausible scenarios are defined and the effects of these scenarios are examined on the container surface temperature as well as the surrounding geosphere to assess whether they meet design criteria for the cases studied. The thermal response shows that if all the materials even being at dried condition, repository still performs acceptably as long as sealing materials remain in contact.