906 resultados para TGA2 phosphorylation, protein kinase CK2
Resumo:
Estrogens and thyroid hormones are regulators of important diverse physiological processes such as reproduction, thermogenesis, neural development, neural differentiation and cardiovascular functions. Both are ligands for receptors in the nuclear receptor superfamily, which act as ligand-dependent transcription factors, regulating transcription. However, estrogens and thyroid hormones also rapidly (within minutes or seconds) activate kinase cascades and calcium increases, presumably initiated at the cell membrane. We discuss the relevance of both modes of hormone action, including the membrane estrogen receptor, to physiology, with particular reference to lordosis behavior. We first showed that estrogen restricted to the membrane can, in fact, lead to subsequent increases in transcription from a consensus estrogen response element-based reporter in the neuroblastoma cell line, SK-N-BE(2)C. Using a novel hormonal paradigm, we also showed that the activation of protein kinase A, protein kinase C, mitogen activated protein kinase and increases in calcium were important in the ability of the membrane-limited estrogen to potentiate transcription. We discuss the source of calcium important in transcriptional potentiation. Since estrogens and thyroid hormones have common effects on neuroprotection, cognition and mood, we also hypothesized that crosstalk could occur between the rapid actions of thyroid hormones and the genomic actions of estrogens. In neural cells, we showed that triiodothyronine acting rapidly via MAPK can increase transcription by the nuclear estrogen receptor ERa from a consensus estrogen response element, possibly by the phosphorylation of the ERa. Novel mechanisms that link signals initiated by hormones from the membrane to the nucleus are physiologically relevant and can achieve neuroendocrine integration
Resumo:
The prion protein (PrP(C)) is a conserved glycosylphosphatidyl-inositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that alpha-bungarotoxin, a specific inhibitor for alpha 7 nicotinic acetylcholine receptor (alpha 7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when alpha 7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C).alpha 7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.
Resumo:
Melanin granule (melanosome) dispersion within Xenopus laevis melanophores is evoked either by light or alpha-MSH. We have previously demonstrated that the initial biochemical steps of light and alpha-MSH signaling are distinct, since the increase in cAMP observed in response to alpha-MSH was not seen after light exposure. cAMP concentrations in response to alpha-MSH were significantly lower in cells pre-exposed to light as compared to the levels in dark-adapted melanophores. Here we demonstrate the presence of an adenylyl cyclase (AC) in the Xenopus melanophore, similar to the mammalian type IX which is inhibited by Ca(2+)-calmodulin-activated phosphatase. This finding supports the hypothesis that the cyclase could be negatively modulated by a light-promoted Ca(2+) increase. In fact, the activity of calcineurin PP2B phosphatase was increased by light, which could result in AC IX inhibition, thus decreasing the response to alpha-MSH. St-Ht31, a disrupting agent of protein kinase A (PKA)-anchoring kinase A protein (AKAP) complex totally blocked the melanosome dispersing response to alpha-MSH, but did not impair the photo-response in Xenopus melanophores. Sequence comparison of a melanophore AKAP partial clone with GenBank sequences showed that the anchoring protein was a gravin-like adaptor previously sequenced from Xenopus non-pigmentary tissues. Co-immunoprecipitation of Xenopus AKAP and the catalytic subunit of PKA demonstrated that PKA is associated with AKAP and it is released in the presence of alpha-MSH. We conclude that in X laevis melanophores, AKAP12 (gravin-like) contains a site for binding the inactive PKA thus compartmentalizing PKA signaling and also possesses binding sites for PKC. Light diminishes alpha-MSH-induced increase of cAMP by increasing calcineurin (PP2B) activity, which in turn inhibits adenylyl cyclase type IX, and/or by activating PKC, which phosphorylates the gravin-like molecule, thus destabilizing its binding to the cell membrane. (C) 2009 Elsevier Inc. All rights reserved.
Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes
Resumo:
Aims Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. Methods and results NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO(2)) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 mu M). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. Conclusion Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.
Resumo:
Objective: To investigate the action of palmitate on insulin receptor (IR) signaling pathway in rat pancreatic islets. The following proteins were studied: IR substrate-1 and -2 (IRS1 and IRS2), phosphatidylinositol 3-kinase, extracellular signal-regulated protein kinase-1 and -2 (ERK1/2), and signal transducer and activator of transcription 3 (STAT3). Methods: Immunoblotting and immunoprecipitation assays were used to evaluate the phosphorylation states of IRS1 and IRS2 (tyrosine [Tyr]), ERK1/2 (threonine 202 [Thr202]/Tyr204), and STAT3 (serine [Ser727]). Results: The exposure of rat pancreatic islets to 0.1-mmol/L palmitate for up to 30 minutes produced a significant increase of Tyr phosphorylation in IRS2 but not in IRS1. The association of phosphatidylinositol 3-kinase with IRS2 was also upregulated by palmitate. Exposure to 5.6-mmol/L glucose caused a gradual decrease in ERK1/2 (Thr202/Tyr204) and STAT3 (serine [Ser727]) phosphorylations after 30-minute incubation. The addition of palmitate (0.1 mmol/L), associated with 5.6-mmol/L glucose, abolished these latter effects of glucose after 15-minute incubation. Conclusions: Palmitate at physiological concentration associated with 5.6-mmol/L glucose activates IR signaling pathway in pancreatic A cells.
Resumo:
We investigated the possible participation of TRPV1 channels in retinal apoptosis and overall development. Retinas from newborn, male albino rats were treated in vitro with capsazepine, a TRPV1 antagonist. The expression of cell cycle markers was not changed after TRPV1 blockade, whereas capsazepine reduced the number of apoptotic cells throughout the retina,increased ERK1/2 and p38 phosphorylation and slightly reduced JNK phosphorylation. The expression of BAD, Bcl-2, as well as integral and cleaved capsase-3 were similar in all experimental conditions. Newborn rats were kept for 2 months after receiving high doses of capsazepine. In their retinas, calbindin and parvalbumin protein levels were upregulated, but only the number of amacrine-like, parvalbumin-positive cells was increased. The numbers of calretinin, calbindin, ChAT, vimentin, PKC-alpha and GABA-positive cells were similar in both conditions. Protein expression of synapsin Ib was also increased in the retinas of capsazepine-treated rats. Calretinin, vimentin, GFAP, synapsin Ia, synaptophysin and light neurofilament protein levels were not changed when compared to control values. Our results indicate that TRPV1 channels play a role in the control of the early apoptosis that occur during retinal development, which might be dependent on MAPK signaling. Moreover, it seems that TRPV1 function might be important for neuronal and synaptic maturation in the retina. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
Short chain fatty acids (SCFAs) are metabolic by products of anerobic bacteria fermentation. These fatty acids, despite being an important fuel for colonocytes, are also modulators of leukocyte function. The aim of this study was to evaluate the effects of SCFAs (acetate, propionate, and butyrate) on function of neutrophils, and the possible mechanisms involved. Neutrophils obtained from rats by intraperitoneal lavage 4 h after injection of oyster glycogen solution (1%) were treated with non toxic concentrations of the fatty acids. After that, the following measurements were performed: phagocytosis and destruction of Candida albicans, production of ROS (O(2)(center dot-), H(2)O(2), and HOCl) and degranulation. Gene expression (p47(phox) and p22(phox)) and protein phosphorylation (p47(phox)) were analyzed by real time reverse transcriptase chain reaction (RT-PCR) and Western blotting, respectively. Butyrate inhibited phagocytosis and killing of C. albicans. This SCFA also had an inhibitory effect on production of O(2)(center dot-), H(2)O(2), and HOCI by neutrophils stimulated with PMA or fMLP. This effect of butyrate was not caused by modulation of expression of NADPH oxidase subunits (p47(phox) and p22(phox)) but it was in part due to reduced levels of p47(phox) phosphorylation and an increase in the concentration of cyclic AMP. Acetate increased the production of O(2)(center dot-) and H(2)O(2), in the absence of stimuli but had no effect on phagocytosis and killing of C. albicans. Propionate had no effect on the parameters studied. These results suggest that butyrate can modulate neutrophil function, and thus could be important in inflammatory neutrophil-associated diseases. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Melatonin diminishes insulin release through the activation of MT1 receptors and a reduction in cAMP production in isolated pancreatic islets of neonate and adult rats and in INS-1 cells ( an insulin-secreting cell line). The pancreas of pinealectomized rats exhibits degenerative pathological changes with low islet density, indicating that melatonin plays a role to ensure the functioning of pancreatic beta cells. By using immunoprecipitation and immunoblotting analysis we demonstrated, in isolated rat pancreatic islets, that melatonin induces insulin growth factor receptor (IGF-R) and insulin receptor (IR) tyrosine phosphorylation and mediates the activities of the PI3K/AKT and MEK/ERKs pathways, which are involved in cell survival and growth, respectively. Thus, the effects of melatonin on pancreatic islets do not involve a reduction in cAMP levels only. This indoleamine may regulate growth and differentiation of pancreatic islets by activating IGF-I and insulin receptor signaling pathways.
Resumo:
Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phosphoERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.
Resumo:
Salivary gland dysfunction is a feature in diabetes and hypertension. We hypothesized that sodium-glucose cotransporter 1 (SGLT1) participates in salivary dysfunctions through a sympathetic- and protein kinase A (PKA)-mediated pathway. In Wistar-Kyoto (WKY), diabetic WKY (WKY-D), spontaneously hypertensive (SHR), and diabetic SHR (SHR-D) rats, PKA/SGLT1 proteins were analyzed in parotid and submandibular glands, and the sympathetic nerve activity (SNA) to the glands was monitored. Basal SNA was threefold higher in SHR (P < 0.001 vs. WKY), and diabetes decreased this activity (similar to 50%, P < 0.05) in both WKY and SHR. The catalytic subunit of PKA and the plasma membrane SGLT1 content in acinar cells were regulated in parallel to the SNA. Electrical stimulation of the sympathetic branch to salivary glands increased (similar to 30%, P < 0.05) PKA and SGLT1 expression. Immunohistochemical analysis confirmed the observed regulations of SGLT1, revealing its location in basolateral membrane of acinar cells. Taken together, our results show highly coordinated regulation of sympathetic activity upon PKA activity and plasma membrane SGLT1 content in salivary glands. Furthermore, the present findings show that diabetic- and/or hypertensive-induced changes in the sympathetic activity correlate with changes in SGLT1 expression in basolateral membrane of acinar cells, which can participate in the salivary glands dysfunctions reported by patients with these pathologies.
Resumo:
Aims Glycosylation with beta-N-acetylglucosamine (O-GlcNAcylation) is one of the most complex post-translational modifications. The cycling of O-GlcNAc is controlled by two enzymes: UDP-NAc transferase (OGT) and O-GlcNAcase (OGA). We recently reported that endothelin-1 (ET-1) augments vascular levels of O-GlcNAcylated proteins. Here we tested the hypothesis that O-GlcNAcylation contributes to the vascular effects of ET-1 via activation of the RhoA/Rho-kinase pathway. Methods and results Incubation of vascular smooth muscle cells (VSMCs) with ET-1 (0.1 mu M) produces a time-dependent increase in O-GlcNAc levels. ET-1-induced O-GlcNAcylation is not observed when VSMCs are previously transfected with OGT siRNA, treated with ST045849 (OGT inhibitor) or atrasentan (ET(A) antagonist). ET-1 as well as PugNAc (OGA inhibitor) augmented contractions to phenylephrine in endothelium-denuded rat aortas, an effect that was abolished by the Rho kinase inhibitor Y-27632. Incubation of VSMCs with ET-1 increased expression of the phosphorylated forms of myosin phosphatase target subunit 1 (MYPT-1), protein kinase C-potentiated protein phosphatase 1 inhibitor protein (protein kinase C-potentiated phosphatase inhibitor-17), and myosin light chain (MLC) and RhoA expression and activity, and this effect was abolished by both OGT siRNA transfection or OGT inhibition and atrasentan. ET-1 also augmented expression of PDZ-Rho GEF (guanine nucleotide exchange factor) and p115-Rho GEF in VSMCs and this was prevented by OGT siRNA, ST045849, and atrasentan. Conclusion We suggest that ET-1 augments O-GlcNAcylation and this modification contributes to increased vascular contractile responses via activation of the RhoA/Rho-kinase pathway.
Resumo:
We evaluated whether changes in protein content and activity of PP-1 and PP-2A were the mechanism underneath the basal age-related reduction in alpha(2/3)-Na,K-ATPase activity in rats cerebella and whether this occurred through the cyclic GMP-PKG pathway. PP1 activity, but not its expression, increased with age, whereas PP-2 was not changed. The activity Of ot2/3-Na,K-ATPase varied with age. and there was a negative association between the PP-1 and alpha(2/3)-Na,K-ATPase activities. In young rats, the inhibition of PP-1 and PP-2A by okadaic acid (OA) increased in a dose-dependent manner alpha(1)- and alpha(2/3)-Na,K-ATPase, but had no effect on Mg-ATPase activity. A direct stimulation of PKG with 8-Br-cyclic GMP did not surmount the effect of OA. This analogue of cyclic GMP inhibited PP-1 activity only, indicating that at least part of the increase in alpha(1)- and alpha(2/3)-Na,K-ATPase activity induced by OA was mediated by the cyclic GMP-PKG-PP-1 cascade. Taking into account that PP1 inhibition increased alpha(2/3)-Na,K-ATPase activity, we propose that an age-related increase in PP-1 activity due to a decrease in cyclic GMP-PKG modulation plays a role for the age-related reduction of alpha(2/3)-Na,K-ATPase activity in rat cerebellum. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The uptake of oxLDL by CD36 is not regulated by intracellular levels of cholesterol, leading to macrophage differentiation into foam cells which play a major role in atherosclerosis. Furthermore, oxLDL competes with PAF in macrophages for binding to PAF receptors (PAFR). Here we investigated the involvement of PAFR in CD36 expression and uptake of oxLDL by human monocytes/macrophages. Adherent peripheral blood mononuclear cells were treated with PAFR-antagonists (WEB2170, CV3988); inhibitors of ERK1/2 (PD98059), p38 (SB203580), JNK (SP600125) or diluents, before stimulation with oxLDL or PAF. After 24 h, uptake of FITC oxLDL and expression of CD36 was determined by flow cytometry and phosphorylation of MAP-kinases by Western blot. It was shown that the uptake of oxLDL was reduced by PAFR antagonists. CD36 expression was up-regulated by oxLDL, an effect reversed by PAFR antagonists. The up-regulation of CD36 and oxLDL uptake both required MAP-kinases activation. The oxLDL induced ERK1/2 and JNK but not p38 phosphorylation was reversed by PAFR-antagonists suggesting that oxLDL signalling involves PAFR dependent and independent pathways. In macrophages from PAFR(-/-) mice, oxLDL was unable to up-regulate CD36 expression and the oxLDL uptake was reduced compared to wild type. These results suggest that oxLDL interacts with PAFR in macrophages to increase CD36 expression and oxLDL uptake. Whereas pharmacological intervention at the level of PAFR would be beneficial in atherosclerosis remains to be determined. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
PURPOSE. Interleukin (IL)-17, which is responsible for the initial influx of leukocytes into the target tissue, was recently described as the main cytokine involved in autoimmune diseases. Vogt-Koyanagi-Harada (VKH) syndrome is a significant cause of noninfectious blindness in the world. Herein the authors aimed at unraveling the involvement of IL-17 in VKH and in experimental autoimmune uveitis, focusing on the signaling pathways involved in IL-17 synthesis. METHODS. Mice were immunized with 161-180 peptide and pertussis toxin. Draining lymph node cells, harvested 21 days after immunization, were cultured in the presence or absence of p38 alpha mitogen-activated protein kinase (MAPK) inhibitor (SB203580) and assayed for cytokine production and quantification of CD4(+)IL-17(+) cells. Mice received intraocular injections of SB203580, and disease severity was evaluated by histologic examination of the enucleated eyes at day 21. CD4(+) lymphocytes from MSK-1/2-deficient mice, human CD4(+) cells silenced with MSK1 siRNA, or peripheral blood mononuclear cells (PBMCs) from VKH patients were cultured in the presence or absence of p38 alpha MAPK inhibitor and then assayed for IL-17, IFN-gamma, and IL-4 production. RESULTS. The inhibition of p38 alpha MAPK fully blocked the synthesis of IL-17 by PBMCs from VKH patients and lymphocytes from EAU mice. The absence of the msk1/2 gene resulted in failure to produce IL-17 by murine and human lymphocytes. Interestingly, intraocular injections of SB203580 in EAU mice did not suppress development of the disease. CONCLUSIONS. These data show that p38 alpha MAPK-MSK1/2 is involved in the control of IL-17 synthesis by CD4(+) T cells and that inhibition of p38 alpha MAPK in vitro suppresses IL-17 synthesis but that inhibition of this kinase in vivo did not protect from EAU. (Invest Ophthalmol Vis Sci. 2010;51:3567-3574) DOI: 10.1167/iovs.09-4393
Resumo:
Background: Allergic lung inflammation is impaired in diabetic rats and is restored by insulin treatment. In the present study we investigated the effect of insulin on the signaling pathways triggered by allergic inflammation in the lung and the release of selected mediators. Methods: Diabetic male Wistar rats (alloxan, 42 mg/kg, i.v., 10 days) and matching controls were sensitized by s.c. injections of ovalbumin (OA) in aluminium hydroxide, 14 days before OA (1 mg/0.4 ml) or saline intratracheal challenge. A group of diabetic rats were treated with neutral protamine Hagedorn insulin (NPH, 4 IU, s.c.), 2 h before the OA challenge. Six hours after the challenge, bronchoalveolar lavage (BAL) was performed for mediator release and lung tissue was homogenized for Western blotting analysis of signaling pathways. Results: Relative to non-diabetic rats, the diabetic rats exhibited a significant reduction in OA-induced phosphorylation of the extracellular signal-regulated kinase (ERK, 59%), p38 (53%), protein kinase B (Akt, 46%), protein kinase C (PKC)-alpha (63%) and PKC-delta (38%) in lung homogenates following the antigen challenge. Activation of the NF-kappa B p65 subunit and phosphorylation of I kappa B alpha were almost suppressed in diabetic rats. Reduced expression of inducible nitric oxide synthase (iNOS, 32%) and cyclooxygenase-2 (COX-2, 46%) in the lung homogenates was also observed. The BAL concentration of prostaglandin (PG)-E(2), nitric oxide (NO) and interleukin (IL)-6 was reduced in diabetic rats (74%, 44% and 65%, respectively), whereas the cytokine-induced neutrophil chemoattractant (CINC)-2 concentration was not different from the control animals. Treatment of diabetic rats with insulin completely or partially restored all of these parameters. This protocol of insulin treatment only partially reduced the blood glucose levels. Conclusion: The data presented show that insulin regulates MAPK, PI3K, PKC and NF-kappa B pathways, the expression of the inducible enzymes iNOS and COX-2, and the levels of NO, PGE(2) and IL-6 in the early phase of allergic lung inflammation in diabetic rats. It is suggested that insulin is required for optimal transduction of the intracellular signals that follow allergic stimulation. Copyright (C) 2010 S. Karger AG, Basel