923 resultados para Suspended Solids
Resumo:
commissioned by Ballet Rambert for the ballet 'Raw', choreographer Mary Evelyn
Resumo:
Many powders and particulate solids are cohesive in nature and the strength often exhibits dependence on the consolidation stress. As a result, the stress history in the material leading up to a handling scenario needs to be considered when evaluating its handleability. This paper outlines the development of a DEM contact model accounting for plasticity and adhesion force, which is shown to be suitable for modelling the stress history dependent cohesive strength. The model was used to simulate the confined consolidation and the subsequent unconfined loading of iron ore fines with particle sizes up to 1.18mm. The predicted flow function was found to be comparable to the experimental results.
Resumo:
Many researchers have investigated the flow and segregation behaviour in model scale experimental silos at normal gravity conditions. However it is known that the stresses experienced by the bulk solid in industrial silos are high when compared to model silos. Therefore it is important to understand the effect of stress level on flow and segregation behaviour and establish the scaling laws governing this behaviour. The objective of this paper is to understand the effect of gravity on the flow and segregation behaviour of bulk solids in a silo centrifuge model. The materials used were two mixtures composed of Polyamide and glass beads. The discharge of two bi-disperse bulk solids in a silo centrifuge model were recorded under accelerations ranging from 1g to 15g. The velocity distribution during discharge was evaluated using Particle Image Velocimetry (PIV) techniques and the concentration distribution of large and small particles were obtained by imaging processing techniques. The flow and segregation behaviour at high gravities were then quantified and compared with the empirical equations available in the literature.
Resumo:
The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 1019W cm-2) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10-20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8-10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.
Resumo:
Senior thesis written for Oceanography 444
Resumo:
We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.
Resumo:
A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.
Resumo:
We have calculated the thermodynamic properties of monatomic fcc crystals from the high temperature limit of the Helmholtz free energy. This equation of state included the static and vibrational energy components. The latter contribution was calculated to order A4 of perturbation theory, for a range of crystal volumes, in which a nearest neighbour central force model was used. We have calculated the lattice constant, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the adiabatic and the isothermal bulk modulus, and the Gruneisen parameter, for two of the rare gas solids, Xe and Kr, and for the fcc metals Cu, Ag, Au, Al, and Pb. The LennardJones and the Morse potential were each used to represent the atomic interactions for the rare gas solids, and only the Morse potential was used for the fcc metals. The thermodynamic properties obtained from the A4 equation of state with the Lennard-Jones potential, seem to be in reasonable agreement with experiment for temperatures up to about threequarters of the melting temperature. However, for the higher temperatures, the results are less than satisfactory. For Xe and Kr, the thermodynamic properties calculated from the A2 equation of state with the Morse potential, are qualitatively similar to the A 2 results obtained with the Lennard-Jones potential, however, the properties obtained from the A4 equation of state are in good agreement with experiment, since the contribution from the A4 terms seem to be small. The lattice contribution to the thermal properties of the fcc metals was calculated from the A4 equation of state, and these results produced a slight improvement over the properties calculated from the A2 equation of state. In order to compare the calculated specific heats and bulk moduli results with experiment~ the electronic contribution to thermal properties was taken into account~ by using the free electron model. We found that the results varied significantly with the value chosen for the number of free electrons per atom.
Resumo:
Molec ul ar dynamics calculations of the mean sq ua re displacement have been carried out for the alkali metals Na, K and Cs and for an fcc nearest neighbour Lennard-Jones model applicable to rare gas solids. The computations for the alkalis were done for several temperatures for temperature vol ume a swell as for the the ze r 0 pressure ze ro zero pressure volume corresponding to each temperature. In the fcc case, results were obtained for a wide range of both the temperature and density. Lattice dynamics calculations of the harmonic and the lowe s t order anharmonic (cubic and quartic) contributions to the mean square displacement were performed for the same potential models as in the molecular dynamics calculations. The Brillouin zone sums arising in the harmonic and the quartic terms were computed for very large numbers of points in q-space, and were extrapolated to obtain results ful converged with respect to the number of points in the Brillouin zone.An excellent agreement between the lattice dynamics results was observed molecular dynamics and in the case of all the alkali metals, e~ept for the zero pressure case of CSt where the difference is about 15 % near the melting temperature. It was concluded that for the alkalis, the lowest order perturbation theory works well even at temperat ures close to the melting temperat ure. For the fcc nearest neighbour model it was found that the number of particles (256) used for the molecular dynamics calculations, produces a result which is somewhere between 10 and 20 % smaller than the value converged with respect to the number of particles. However, the general temperature dependence of the mean square displacement is the same in molecular dynamics and lattice dynamics for all temperatures at the highest densities examined, while at higher volumes and high temperatures the results diverge. This indicates the importance of the higher order (eg. ~* ) perturbation theory contributions in these cases.
Resumo:
It is proposed to study the suspended sediment transport characteristics of river basins of Kerala and to model suspended sediment discharge mechanism for typical micro-watersheds. The Pamba river basin is selected as a representative hydrologic regime for detailed studies of suspended sediment characteristics and its seasonal variation. The applicability of various erosion models would be tested by comparing with the observed event data (by continuous monitoring of rainfall, discharge, and suspended sediment concentration for lower order streams). Empirical, conceptual and physically distributed models were used for making the comparison of performance of the models. Large variations in the discharge and sediment quantities were noticed during a particular year between the river basins investigated and for an individual river basin during the years for which the data was available. In general, the sediment yield pattern follows the seasonal distribution of rainfall, discharge and physiography of the land. This confirms with similar studies made for other Indian rivers. It was observed from this study, that the quantity of sediment transported downstream shows a decreasing trend over the years corresponding to increase in discharge. For sound and sustainable management of coastal zones, it is important to understand the balance between erosion and retention and to quantify the exact amount of the sediments reaching this eco-system. This, of course, necessitates a good length of time series data and more focused research on the behaviour of each river system, both present and past. In this realm of river inputs to ocean system, each of the 41 rivers of Kerala may have dominant yet diversified roles to influence the coastal ecosystem as reflected from this study on the major fraction of transport, namely the suspended sediments