833 resultados para Surface mechanical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with preparation of nanocomposites using modified nanoclay (organoclay) and polypropylene (PP), with, and without compatibilizer (m-TMI-g-PP) to study the effects of modified nanoclay and compatibilizer on viscoelastic properties. Nanocomposites were prepared in two steps; compounding of master batch of nanoclay, polypropylene and m-TMI-g-PP in a torque rheometer and blending of this master-batch with polypropylene in a twin-screw extruder in the specific proportions to yield 3-9% nanoclay by weight in the composite. Dynamic Mechanical Analysis (DMA) tests were carried out to investigate the viscoelastic behavior of virgin polypropylene and nanocomposites. The dynamic mechanical properties such as storage modulus (E'), loss modulus (E `') and damping coefficient (tand) of PP and nano-composites were investigated with and without compatibilizer in the temperature range of -40 degrees C to 140 degrees C at a step of 5 degrees C and frequency range of 5 Hz to 100 Hz at a step of 10 Hz. Storage modulus and loss modulus of the nano-composites was significantly higher than virgin polypropylene throughout the temperature range. Storage modulus of the composites increased continuously with increasing nano-content from 3% to 9%. Composites prepared with compatibilizer exhibited inferior storage modulus than the composites without compatibilizer. Surface morphology such as dispersion of nanoclay in the composites with and without compatibilizer was analyzed through Atomic Force Microscope (AFM) that explained the differences in viscoelastic behavior of composites. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The β-phase of polyvinylidene fluoride (PVDF) is well known for its piezoelectric properties. PVDF films have been developed using solvent cast method. The films thus produced are in α-phase. The α-phase is transformed to piezoelectric β-phase when the film is hot-stretched with various different stretching factors at various different temperatures. The films are then characterized in terms of their mechanical properties and surface morphological changes during the transformation from α- to β-phases by using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The films showed increased crystallinity with stretching at temperature up to 80°C. The optimum conditions to achieve β-phase have been discussed in detail. The fabricated PVDF sensors have been tested for free vibration and impact on plate structure, and its response is compared with conventional piezoelectric wafer type sensor. The resonant and antiresonant peaks in the frequency response of PVDF sensor match well with that of lead zirconate titanate wafer sensors. Effective piezoelectric properties and the variations in the frequency response spectra due to free vibration and impact loading conditions are reported. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycidyl azide polymer (GAP) was cured through click chemistry by reaction of the azide group with bispropargyl succinate (BPS) through a 1,3-dipolar cycloaddition reaction to form 1,2,3-triazole network. The properties of GAP-based triazole networks are compared with the urethane cured GAP-systems. The glass transition temperature (T-g), tensile strength, and modulus of the system increased with crosslink density, controlled by the azide to propargyl ratio. The triazole incorporation has a higher T-g in comparison to the GAP-urethane system (T-g-20 degrees C) and the networks exhibit biphasic transitions at 61 and 88 degrees C. The triazole curing was studied using Differential Scanning Calorimetry (DSC) and the related kinetic parameters were helpful for predicting the cure profile at a given temperature. Density functional theory (DFT)-based theoretical calculations implied marginal preference for 1,5-addition over 1,4-addition for the cycloaddition between azide and propargyl group. Thermogravimetic analysis (TG) showed better thermal stability for the GAP-triazole and the mechanism of decomposition was elucidated using pyrolysis GC-MS studies. The higher heat of exothermic decomposition of triazole adduct (418kJmol(-1)) against that of azide (317kJmol(-1)) and better mechanical properties of the GAP-triazole renders it a better propellant binder than the GAP-urethane system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silicene, a graphene analogue of silicon, has been generating immense interest due to its potential for applications in miniaturized devices. Unlike planar graphene, silicene prefers a buckled structure. Here we explore the possibility of stabilizing the planar form of silicene by Ni doping using first principles density functional theory based calculations. It is found that planar as well as buckled structure is stable for Ni-doped silicene, but the buckled sheet has slightly lower total energy. The planar silicene sheet has unstable phonon modes. A comparative study of the mechanical properties reveals that the in-plane stiffness of both the pristine and the doped planar silicene is higher compared to that of the buckled silicene. This suggests that planar silicene is mechanically more robust. Electronic structure calculations of the planar and buckled Ni-doped silicene show that the energy bands at the Dirac point transform from linear behavior to parabolic dispersion. Furthermore, we extend our study to Ge and Sn sheets that are also stable and the trends of comparable mechanical stability of the planar and buckled phases remain the same.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoindentation technique is utilized to examine mechanical property variation in Eu doped Na0.5Bi0.5 TiO3 (NBT). Doping levels of Eu in NBT is systematically varied. Dilute doping results in a linear reduction in both modulus and hardness. At higher concentrations, a recovery of the mechanical properties (to undoped NBT values) is observed. These experimental trends mirror variations in the optical emission intensities with Eu concentration. Observed trends are rationalized on the basis of a model, which hypothesizes phase segregation beyond a critical Eu doping level. Such segregation leads to the formation of pure NBT, nano-Eu saturated NBT, and nano-mixed Eu oxides in the microstructure. Pure NBT is optically inactive, while saturated Eu:NBT is a much better emitter when compared to europium oxide. Hence beyond the critical concentration, luminescence signal comes primarily from the saturated Eu:NBT phase. The model presented is supported by nanoindentation, and spectroscopic results. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyolefin based blends have tremendous commercial importance in view of their exceptional properties. In this study the interface of a biphasic polymer blend of PE (polyethylene) and PEO (polyethylene oxide) has been tailored to reduce the interfacial tension between the phases and to render finer morphology. This was accomplished by employing various strategies like addition of maleated PE (PE grafted maleic anhydride), immobilizing PE chains, ex situ, onto MWNTs by covalent grafting, and in situ grafting of PE chains onto MWNTs during melt processing. Multiwalled nanotubes (MWNTs) with different surface functional groups have been synthesized either a priori or were facilitated during melt mixing at higher temperature. NH2 terminated MWNTs were synthesized by grafting ethylene diamine (EDA) onto carboxyl functionalized carbon nanotubes (COOH(MWNTs) and further, was used to reactively couple with maleated PE to immobilize PE chains on the surface of MWNTs. The covalent coupling of maleated PE with NH2 terminated MWNTs was also realized in situ in the melt extruder at high temperature. Both NH2 terminated MWNTs and the in situ formed PE brush on MWNTs during melt mixing, revealed a significant improvement in the mechanical properties of the blend besides remarkably improving the dispersion of the minor phase (PEO) in the blends. Structural properties of the composites were evaluated and the tensile fractured morphology was assessed using scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL) is an aliphatic polyester widely used for biomedical applications but lacks the mechanical properties desired for many load-bearing orthopedic applications. The objective of this study was to prepare and characterize PCL composites incorporating multiwall carbon nanotubes (MWNTs) with different surface functional groups. PCL composites were prepared by melt-mixing with three different types of MWNTs: pristine (pMWNT), amine functionalized (aMWNT), and carboxyl functionalized (cMWNT). Melt rheology and scanning electron microscopy indicated good dispersion of the nanotubes in the matrix. Tensile strength and elastic modulus of the polymer was significantly increased by the incorporation of MWNTs and further enhanced by favorable interactions between PCL and aMWNTs. Thermal analysis revealed that MWNTs act as heterogeneous nucleation sites for crystallization of PCL and increase polymer crystallinity. Incorporation of functionalized MWNTs increased the surface water wettability of PCL. Osteoblast proliferation and differentiation was significantly enhanced on functionalized composites. aMWNT composites also exhibited the best bactericidal response. This study demonstrates that surface functionalization of MWNTs profoundly influences the properties of PCL and amine-functionalization offers the optimal combination of mechanical properties, osteogenesis and antimicrobial response. These results have important implications for designing nanocomposites for use in orthopedics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bio-nanocomposites have been developed using cross-linked chitosan and cross-linked thermoplastic starch along with acid functionalized multiwalled carbon nanotubes (f-MWCNT). The nanocomposites developed were characterized for mechanical, wear, and thermal properties. The results revealed that the nanocomposites exhibited enhanced mechanical properties. The composites containing 3% f-MWCNT showed maximum compression strength. Tribological studies revealed that, with the addition of small amount of f-MWCNTs the slide wear loss reduced up to 25%. SEM analysis of the nanocomposites showed predominantly brittle fractured surface. Thermal analysis showed that the incorporation of f-MWCNTs has improved the thermal stability for the nanocomposites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal-organic frameworks (MOFs) and boron nitride both possess novel properties, the former associated with microporosity and the latter with good mechanical properties. We have synthesized composites of the imidazolate based MOF, ZIF-8, and few-layer BN in order to see whether we can incorporate the properties of both these materials in the composites. The composites so prepared between BN nanosheets and ZIF-8 have compositions ZIF-1BN, ZIF-2BN, ZIF-3BN and similar to ZIF-4BN. The composites have been characterized by PXRD, TGA, XPS, electron microscopy, IR, Raman and solid state NMR spectroscopy. The composites possess good surface areas, the actual value decreasing only slightly with the increase in the BN content. The CO2 uptake remains nearly the same in the composites as in the parent ZIF-8. More importantly, the addition of BN markedly improves the mechanical properties of ZIF-8, a feature that is much desired in MOFs. Observation of microporous features along with improved mechanical properties in a MOF is indeed noteworthy. Such manipulation of properties can be profitably exploited in practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using all-atom molecular dynamics (MD) simulations, we have studied the mechanical properties of ZnS/CdS core/shell nanowires. Our results show that the coating of a few-atomic-layer CdS shell on the ZnS nanowire leads to a significant change in the stiffness of the core/shell nanowires compared to the stiffness of pure ZnS nanowires. The binding energy between the core and shell region decreases due to the lattice mismatch at the core-shell interface. This reduction in binding energy plays an important role in determining the stiffness of a core/shell nanowire. We have also investigated the effects of the shell on the thermal conductivity and melting behavior of the nanowires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diamond-like carbon (DLC) films with different thicknesses on 9Crl8 bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickers indentation. nanoin-dentation and nanoscratch tests were used to characterize the DLC films with a wide range of applied loads. Mechanical and tribological behaviors of these submicron films were investigated and interpreted. The hardnesses of 9Crl8 and DLC, determined by nanoindentation, are approximately 8GPa and 60GPa respectively; their elastic moduli are approximately 25OGPa and 600GPa respectively. The friction coefficients of 9Crl8, DLC. organic coating, determined by nanoscratch, are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation and nanoscratch tests can provide more information about the near-surface elastic-plastic deformation, friction and wear properties. The correlation of mechanical properties and scratch resistance of DLC films on 9Crl8 steels can provide an assessment for the load-carrying capacity and wear resistance

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bonded networks of metal fibres are highly porous, permeable materials, which often exhibit relatively high strength. Material of this type has been produced, using melt-extracted ferritic stainless steel fibres, and characterised in terms of fibre volume fraction, fibre segment (joint-to-joint) length and fibre orientation distribution. Young's moduli and yield stresses have been measured. The behaviour when subjected to a magnetic field has also been investigated. This causes macroscopic straining, as the individual fibres become magnetised and tend to align with the applied field. The modeling approach of Markaki and Clyne, recently developed for prediction of the mechanical and magneto-mechanical properties of such materials, is briefly summarised and comparisons are made with experimental data. The effects of filling the inter-fibre void with compliant (polymeric) matrices have also been explored. In general the modeling approach gives reliable predictions, particularly when the network architecture has been characterised using X-ray tomography. © 2005 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly are carried out. It is found that in the direction of the thickness the membrane was divided into three layers rather than a single entity as traditionally considered, and on the surfaces the membrane displays a random distribution rough microstructure that is composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surface structure are measured and described. The mechanical properties of the membranes taken separately from the wings of live and dead dragonflies are investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed investigations on the microstructure and the mechanical properties of the wing membrane of the dragonfly were carried out. It was found that in the direction of the thickness the membrane was divided into three layers rather than as traditionally considered as a single entity, and on the surfaces the membrane displayed a random distribution rough microstructure that was composed of numerous nanometer scale columns coated by the cuticle wax secreted. The characteristics of the surfaces were accurately measured and a statistical radial distribution function of the columns was presented to describe the structural properties of the surfaces. Based on the surface microstructure, the mechanical properties of the membranes taken separately from the wings of living and dead dragonflies were investigated by the nanoindentation technique. The Young's moduli obtained here are approximately two times greater than the previous result, and the reasons that yield the difference are discussed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technology of laser quenching is widely used to improve the surface properties of steels in surface engineering. Generally, laser quenching of steels can lead to two important results. One is the generation of residual stress in the surface layer. In general, the residual stress varies from the surface to the interior along the quenched track depth direction, and the residual stress variation is termed as residual stress gradient effect in this work. The other is the change of mechanical properties of the surface layer, such as the increases of the micro-hardness, resulting from the changes of the microstructure of the surface layer. In this work, a mechanical model of a laser-quenched specimen with a crack in the middle of the quenched layer is developed to quantify the effect of residual stress gradient and the average micro-hardness over the crack length on crack tip opening displacement (CTOD). It is assumed that the crack in the middle of the quenched layer is created after laser quenching, and the crack can be a pre-crack or a defect due to some reasons, such as a void, cavity or a micro-crack. Based on the elastic-plastic fracture mechanics theory and using the relationship between the micro-hardness and yield strength, a concise analytical solution, which can be used to quantify the effect of residual stress gradient and the average micro-hardness over the crack length resulting from laser quenching on CTOD, is obtained. The concise analytical solution obtained in this work, cannot only be used as a means to predict the crack driving force in terms of the CTOD, but also serve as a baseline for further experimental investigation of the effect after laser-quenching treatment on fracture toughness in terms of the critical CTOD of a specimen, accounting for the laser-quenching effect. A numerical example presented in this work shows that the CTOD of the quenched can be significantly decreased in comparison with that of the unquenched. (C) 2008 Elsevier B.V. All rights reserved.