860 resultados para Sugarcane diseases detection index


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Video surveillance technology, based on Closed Circuit Television (CCTV) cameras, is one of the fastest growing markets in the field of security technologies. However, the existing video surveillance systems are still not at a stage where they can be used for crime prevention. The systems rely heavily on human observers and are therefore limited by factors such as fatigue and monitoring capabilities over long periods of time. To overcome this limitation, it is necessary to have “intelligent” processes which are able to highlight the salient data and filter out normal conditions that do not pose a threat to security. In order to create such intelligent systems, an understanding of human behaviour, specifically, suspicious behaviour is required. One of the challenges in achieving this is that human behaviour can only be understood correctly in the context in which it appears. Although context has been exploited in the general computer vision domain, it has not been widely used in the automatic suspicious behaviour detection domain. So, it is essential that context has to be formulated, stored and used by the system in order to understand human behaviour. Finally, since surveillance systems could be modeled as largescale data stream systems, it is difficult to have a complete knowledge base. In this case, the systems need to not only continuously update their knowledge but also be able to retrieve the extracted information which is related to the given context. To address these issues, a context-based approach for detecting suspicious behaviour is proposed. In this approach, contextual information is exploited in order to make a better detection. The proposed approach utilises a data stream clustering algorithm in order to discover the behaviour classes and their frequency of occurrences from the incoming behaviour instances. Contextual information is then used in addition to the above information to detect suspicious behaviour. The proposed approach is able to detect observed, unobserved and contextual suspicious behaviour. Two case studies using video feeds taken from CAVIAR dataset and Z-block building, Queensland University of Technology are presented in order to test the proposed approach. From these experiments, it is shown that by using information about context, the proposed system is able to make a more accurate detection, especially those behaviours which are only suspicious in some contexts while being normal in the others. Moreover, this information give critical feedback to the system designers to refine the system. Finally, the proposed modified Clustream algorithm enables the system to both continuously update the system’s knowledge and to effectively retrieve the information learned in a given context. The outcomes from this research are: (a) A context-based framework for automatic detecting suspicious behaviour which can be used by an intelligent video surveillance in making decisions; (b) A modified Clustream data stream clustering algorithm which continuously updates the system knowledge and is able to retrieve contextually related information effectively; and (c) An update-describe approach which extends the capability of the existing human local motion features called interest points based features to the data stream environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated visual surveillance of crowds is a rapidly growing area of research. In this paper we focus on motion representation for the purpose of abnormality detection in crowded scenes. We propose a novel visual representation called textures of optical flow. The proposed representation measures the uniformity of a flow field in order to detect anomalous objects such as bicycles, vehicles and skateboarders; and can be combined with spatial information to detect other forms of abnormality. We demonstrate that the proposed approach outperforms state-of-the-art anomaly detection algorithms on a large, publicly-available dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops a composite participation index (PI) to identify patterns of transport disadvantage in space and time. It is operationalised using 157 weekly activity-travel diaries data collected from three case study areas in rural Northern Ireland. A review of activity space and travel behaviour research found that six dimensional indicators of activity spaces were typically used including the number of unique locations visited, distance travelled, area of activity spaces, frequency of activity participation, types of activity participated in, and duration of participation in order to identify transport disadvantage. A combined measure using six individual indices were developed based on the six dimensional indicators of activity spaces, by taking into account the relativity of the measures for weekdays, weekends, and for a week. Factor analyses were conducted to derive weights of these indices to form the PI measure. Multivariate analysis using general linear models of the different indicators/indices identified new patterns of transport disadvantage. The research found that: indicator based measures and index based measures are complement each other; interactions between different factors generated new patterns of transport disadvantage; and that these patterns vary in space and time. The analysis also indicates that the transport needs of different disadvantaged groups are varied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although transport related social exclusion has been identified through zonal accessibility measures in the recent past, the debate has shifted from zonal to individual level measures. One way to identify disadvantaged individuals is to measure their size of participation in society (activity spaces). After reviewing existing literature, this paper has found two approaches to measure the activity spaces. One approach is based on the time-geographic potential path area (PPA) concept. The size of the PPA has largely been used as an indicator to the size of potential activity spaces and consequently individual accessibility. The limitations of the PPA concept have been identified in this paper and it is argued cannot be applied as a measure of social exclusion. The other approach is based on individuals’ actual travel activity participation called actual activity spaces. The size of actual activity spaces possesses a good potential measure of social exclusion. However, the indicators to measure the size of actual activity spaces are multidimensional representing the different aspects of social exclusion. The development of a unified approach has therefore been found to be important. This paper has developed a participation index (PI) using the different dimensions of actual activity spaces encountered. A framework has also been developed to operationalise the concept in GIS. The framework, on the one hand, will visualize individuals’ actual travel behaviour in real geographic space; on the other hand, it will calculate the size of their participation in society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network-based Intrusion Detection Systems (NIDSs) monitor network traffic for signs of malicious activities that have the potential to disrupt entire network infrastructures and services. NIDS can only operate when the network traffic is available and can be extracted for analysis. However, with the growing use of encrypted networks such as Virtual Private Networks (VPNs) that encrypt and conceal network traffic, a traditional NIDS can no longer access network traffic for analysis. The goal of this research is to address this problem by proposing a detection framework that allows a commercial off-the-shelf NIDS to function normally in a VPN without any modification. One of the features of the proposed framework is that it does not compromise on the confidentiality afforded by the VPN. Our work uses a combination of Shamir’s secret-sharing scheme and randomised network proxies to securely route network traffic to the NIDS for analysis. The detection framework is effective against two general classes of attacks – attacks targeted at the network hosts or attacks targeted at framework itself. We implement the detection framework as a prototype program and evaluate it. Our evaluation shows that the framework does indeed detect these classes of attacks and does not introduce any additional false positives. Despite the increase in network overhead in doing so, the proposed detection framework is able to consistently detect intrusions through encrypted networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically-specific analysis and detection of drugs and pharmaceuticals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a novel approach for identifying risks in executable business processes and detecting them at run time. The approach considers risks in all phases of the business process management lifecycle, and is realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of faults to occur. Both historical and current execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a process automation suite to prompt the results to the user who may take remedial actions. The proposed architecture has been implemented in the YAWL system and its performance has been evaluated in practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chlamydia pneumoniae is a widespread pathogen causing upper and lower respiratory tract infections in addition to a range of other diseases in humans and animals. Previous whole genome analyses have focused on four essentially clonal (> 99% identity) C. pneumoniae human genomes (AR39, CWL029, J138 and TW183), providing relatively little insight into strain diversity and evolution of this species. Results We performed individual gene-by-gene comparisons of the recently sequenced C. pneumoniae koala genome and four C. pneumoniae human genomes to identify species-specific genes, and more importantly, to gain an insight into the genetic diversity and evolution of the species. We selected genes dispersed throughout the chromosome, representing genes that were specific to C. pneumoniae, genes with a demonstrated role in chlamydial biology and/or pathogenicity (n = 49), genes encoding nucleotide salvage or amino acid biosynthesis proteins (n = 6), and extrachromosomal elements (9 plasmid and 2 bacteriophage genes). Conclusions We have identified strain-specific differences and targets for detection of C. pneumoniae isolates from both human and animal origin. Such characterisation is necessary for an improved understanding of disease transmission and intervention.