991 resultados para Structure of thought
Resumo:
Long-term sustainable management of wild populations should be based on management actions that account for the genetic structure among populations. Knowledge of genetic structure and of the degree of demographic exchange between discreet [sic] populations allows managers to better define management units. However, adequate gene loci for population assessments are not always available. In this study, variable co-dominant DNA loci in the heavily exploited marine genus Brevoortia were developed with a microsatellite-enriched DNA library for the Gulf Menhaden (Brevoortia patronus). Microsatellite marker discovery was followed by genetic characterization of 4 endemic North American Brevoortia species, by using 14 novel loci as well as 5 previously described loci. Power analysis of these loci for use in species identification and genetic stock structure was used to assess their potential to improve the stock definition in the menhaden fishery of the Gulf of Mexico. These loci could be used to reliably identify menhaden species in the Gulf of Mexico with an estimated error rate of α=0.0001. Similarly, a power analysis completed on the basis of observed allele frequencies in Gulf Menhaden indicated that these markers can be used to detect very small levels of genetic divergence (Fst≈0.004) among simulated populations, with sample sizes as small as n=50 individuals. A cursory analysis of genetic structure among Gulf Menhaden sampled throughout the Gulf of Mexico indicated limited genetic structure among sampling locations, although the available sampling did not reach the target number (n=50) necessary to detect minimal values of significant structure.
Resumo:
Management agencies often use geopolitical boundaries as proxies for biological boundaries. In Hawaiian waters a single stock is recognized of common bottlenose dolphins, Tursiops truncatus, a species that is found both in open water and near-shore among the main Hawaiian Islands. To assess population structure, we photo-identified 336 distinctive individuals from the main Hawaiian Islands, from 2000 to 2006. Their generally shallow-water distribution, and numerous within-year and between-year resightings within island areas suggest that individuals are resident to the islands, rather than part of an offshore population moving through the area. Comparisons of identifications obtained from Kaua‘i/Ni‘ihau, O‘ahu, the “4-island area,” and the island of Hawai‘i showed no evidence of movements among these island groups, although movements from Kaua‘i to Ni‘ihau and among the “4-islands” were documented. A Bayesian analysis examining the probability of missing movements among island groups, given our sample sizes for different areas, indicates that interisland movement rates are less than 1% per year with 95% probability. Our results suggest the existence of multiple demographically independent populations of island-associated common bottlenose dolphins around the main Hawaiian islands.
Resumo:
A total of 1006 king mackerel (Scomberomorus cavalla) representing 20 discrete samples collected between 1996 and 1998 along the east (Atlantic) and west (Gulf) coasts of Florida and the Florida Keys were assayed for allelic variation at seven nuclear-encoded microsatellites. No significant deviations from Hardy-Weinberg equilibrium expectations were found for six of the microsatellites, and genotypes at all microsatellites were independent. Allele distributions at each microsatellite were independent of sex and age of individuals. Homogeneity tests of spatial distributions of alleles at the microsatellites revealed two weakly divergent “genetic” subpopulations or stocks of king mackerel in Florida waters—one along the Atlantic coast and one along the Gulf coast. Homogeneity tests of allele distributions when samples were pooled along seasonal (temporal) boundaries, consistent with the temporal boundaries used currently for stock assessment and allocation of the king mackerel resource, were nonsignificant. The degree of genetic divergence between the two “genetic” stocks was small: on average, only 0.19% of the total genetic variance across all samples assayed occurred between the two regions. Cluster analysis, assignment tests, and spatial autocorrelation analysis did not generate patterns that were consistent with either geographic or spatial-temporal boundaries. King mackerel sampled from the Florida Keys could not be assigned unequivocally to either “genetic” stock. The genetic data were not consistent with current spatial-temporal boundaries employed in stock assessment and allocation of the king mackerel resource. The genetic differences between king mackerel in the Atlantic versus those in the Gulf most likely stem from reduced gene flow (migration) between the Atlantic and Gulf in relation to gene flow (migration) along the Atlantic and Gulf coasts of peninsular Florida. This difference is consistent with findings for other marine fishes where data indicate that the southern Florida peninsula serves (or has served) as a biogeographic boundary.