970 resultados para Structural Complexity
Resumo:
The problem of determining whether a Tanner graph for a linear block code has a stopping set of a given size is shown to be NT-complete.
Resumo:
We address the problem of distributed space-time coding with reduced decoding complexity for wireless relay network. The transmission protocol follows a two-hop model wherein the source transmits a vector in the first hop and in the second hop the relays transmit a vector, which is a transformation of the received vector by a relay-specific unitary transformation. Design criteria is derived for this system model and codes are proposed that achieve full diversity. For a fixed number of relay nodes, the general system model considered in this paper admits code constructions with lower decoding complexity compared to codes based on some earlier system models.
Resumo:
It is well known that Alamouti code and, in general, Space-Time Block Codes (STBCs) from complex orthogonal designs (CODs) are single-symbol decodable/symbolby-symbol decodable (SSD) and are obtainable from unitary matrix representations of Clifford algebras. However, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). In this paper, we obtain SSD codes with unitary weight matrices (but not CON) from matrix representations of Clifford algebras. Moreover, we derive an upper bound on the rate of SSD codes with unitary weight matrices and show that our codes meet this bound. Also, we present conditions on the signal sets which ensure full-diversity and give expressions for the coding gain.
Resumo:
Space-Time Block Codes (STBCs) from Complex Orthogonal Designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD); however, SSD codes are obtainable from designs that are not CODs. Recently, two such classes of SSD codes have been studied: (i) Coordinate Interleaved Orthogonal Designs (CIODs) and (ii) Minimum-Decoding-Complexity (MDC) STBCs from Quasi-ODs (QODs). The class of CIODs have non-unitary weight matrices when written as a Linear Dispersion Code (LDC) proposed by Hassibi and Hochwald, whereas the other class of SSD codes including CODs have unitary weight matrices. In this paper, we construct a large class of SSD codes with nonunitary weight matrices. Also, we show that the class of CIODs is a special class of our construction.
Resumo:
In this paper, we present a growing and pruning radial basis function based no-reference (NR) image quality model for JPEG-coded images. The quality of the images are estimated without referring to their original images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity factors such as edge amplitude, edge length, background activity and background luminance. Image quality estimation involves computation of functional relationship between HVS features and subjective test scores. Here, the problem of quality estimation is transformed to a function approximation problem and solved using GAP-RBF network. GAP-RBF network uses sequential learning algorithm to approximate the functional relationship. The computational complexity and memory requirement are less in GAP-RBF algorithm compared to other batch learning algorithms. Also, the GAP-RBF algorithm finds a compact image quality model and does not require retraining when the new image samples are presented. Experimental results prove that the GAP-RBF image quality model does emulate the mean opinion score (MOS). The subjective test results of the proposed metric are compared with JPEG no-reference image quality index as well as full-reference structural similarity image quality index and it is observed to outperform both.
Resumo:
Encoding protein 3D structures into 1D string using short structural prototypes or structural alphabets opens a new front for structure comparison and analysis. Using the well-documented 16 motifs of Protein Blocks (PBs) as structural alphabet, we have developed a methodology to compare protein structures that are encoded as sequences of PBs by aligning them using dynamic programming which uses a substitution matrix for PBs. This methodology is implemented in the applications available in Protein Block Expert (PBE) server. PBE addresses common issues in the field of protein structure analysis such as comparison of proteins structures and identification of protein structures in structural databanks that resemble a given structure. PBE-T provides facility to transform any PDB file into sequences of PBs. PBE-ALIGNc performs comparison of two protein structures based on the alignment of their corresponding PB sequences. PBE-ALIGNm is a facility for mining SCOP database for similar structures based on the alignment of PBs. Besides, PBE provides an interface to a database (PBE-SAdb) of preprocessed PB sequences from SCOP culled at 95% and of all-against-all pairwise PB alignments at family and superfamily levels. PBE server is freely available at http://bioinformatics.univ-reunion.fr/ PBE/.
Resumo:
The crystal structures of five model peptides Piv-Pro-Gly-NHMe (1), Piv-Pro-beta Gly-NHMe (2), Piv-Pro-beta Gly-OMe (3), Piv-Pro-delta Ava-OMe (4) and Boc-Pro-gamma Abu-OH (5) are described (Piv:pivaloyl; NHMe: N-methylamide; beta Gly:beta-glycine; OMe:O-methyl ester; delta Ava:delta-aminovaleric acid; gamma Abu:gamma-aminobutyric acid). A comparison of the structures of peptides 1 and 2 illustrates the dramatic consequences upon backbone homologation in short sequences. 1 adopts a type II beta-turn conformation in the solid state, while in 2, the molecule adopts an open conformation with the beta-residue being fully extended. Piv-Pro-beta Gly-OMe (3), which differs from 2 by replacement of the C-terminal NH group by an O-atom, adopts an almost identical molecular conformation and packing arrangement in the solid state. In peptide 4, the observed conformation resembles that determined for 2 and 3, with the delta Ava residue being fully extended. In peptide 5, the molecule undergoes a chain reversal, revealing a beta-turn mimetic structure stabilized by a C-H center dot center dot center dot O hydrogen bond.
Resumo:
The hydrophobic effect is widely believed to be an important determinant of protein stability. However, it is difficult to obtain unambiguous experimental estimates of the contribution of the hydrophobic driving force to the overall free energy of folding. Thermodynamic and structural studies of large to small substitutions in proteins are the most direct method of measuring this contribution. We have substituted the buried residue Phe8 in RNase S with alanine, methionine, and norleucine, Binding thermodynamics and structures were characterized by titration calorimetry and crystallography, respectively. The crystal structures of the RNase S F8A, F8M, and F8Nle mutants indicate that the protein tolerates the changes without any main chain adjustments, The correlation of structural and thermodynamic parameters associated with large to small substitutions was analyzed for nine mutants of RNase S as well as 32 additional cavity-containing mutants of T4 lysozyme, human lysozyme, and barnase. Such substitutions were typically found to result in negligible changes in Delta C-p and positive values of both Delta Delta H degrees and aas of folding. Enthalpic effects were dominant, and the sign of Delta Delta S is the opposite of that expected from the hydrophobic effect. Values of Delta Delta G degrees and Delta Delta H degrees correlated better with changes in packing parameters such as residue depth or occluded surface than with the change in accessible surface area upon folding. These results suggest that the loss of packing interactions rather than the hydrophobic effect is a dominant contributor to the observed energetics for large to small substitutions. Hence, estimates of the magnitude of the hydrophobic driving force derived from earlier mutational studies are likely to be significantly in excess of the actual value.
Resumo:
The asymmetric stress strain behavior under tension/compression in an initial < 100 > B-2-NiAl nanowire is investigated considering two different surface configurations i.e., < 100 >/(0 1 0) (0 0 1) and < 100 >/(0 1 1) (0 - 1 1). This behavior is attributed to two different deformation mechanisms namely a slip dominated deformation under compression and a known twinning dominated deformation under tension. It is also shown that B2 -> BCT (body-centered-tetragonal) phase transformation under tensile loading is independent of the surface configurations for an initial < 100 > oriented NiAl nanowire. Under tensile loading, the nanowire undergoes a stress-induced martensiticphase transformation from an initial B2 phase to BCT phase via twinning along {110} plane with failure strain of similar to 0.30. On the other hand, a compressive loading causes failure of these nanowires via brittle fracture after compressive yielding, with a maximum failure strain of similar to-0.12. Such brittle fracture under compressive loading occurs via slip along {110} plane without any phase transformations. Softening/hardening behavior is also reported for the first time in these nanowires under tensile/compressive loadings, which cause asymmetry in their yield strength behavior in the stress strain space. Result shows that a sharp increase in energy with increasing strain under compressive loading causes hardening of the nanowire, and hence, gives improved yield strength as compared to tensile loading. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.
Resumo:
The existence of an icosahedral phase in Mg−Al−Ag is better understood on a crystallographic basis rather than on a quantum structural diagram basis. The quasicrystalline structure is delineated in terms of quasiperiodic arrangement of Pauling triacontahedra, which can be identified in the equilibrium structure. Subtle differences in the electron diffraction patterns have been recorded compared to the ideal quasicrystalline pattern. The misalignment of spots and distortions are better attributed to higher order rational approximate structure than anisotropic phason strain. Ares of diffuse intensity have been related to the ordering among the atoms in the clusters.
Resumo:
Non-orthogonal space-time block codes (STBC) with large dimensions are attractive because they can simultaneously achieve both high spectral efficiencies (same spectral efficiency as in V-BLAST for a given number of transmit antennas) as well as full transmit diversity. Decoding of non-orthogonal STBCs with large dimensions has been a challenge. In this paper, we present a reactive tabu search (RTS) based algorithm for decoding non-orthogonal STBCs from cyclic division algebras (CDA) having largedimensions. Under i.i.d fading and perfect channel state information at the receiver (CSIR), our simulation results show that RTS based decoding of 12 X 12 STBC from CDA and 4-QAM with 288 real dimensions achieves i) 10(-3) uncoded BER at an SNR of just 0.5 dB away from SISO AWGN performance, and ii) a coded BER performance close to within about 5 dB of the theoretical MIMO capacity, using rate-3/4 turbo code at a spectral efficiency of 18 bps/Hz. RTS is shown to achieve near SISO AWGN performance with less number of dimensions than with LAS algorithm (which we reported recently) at some extra complexity than LAS. We also report good BER performance of RTS when i.i.d fading and perfect CSIR assumptions are relaxed by considering a spatially correlated MIMO channel model, and by using a training based iterative RTS decoding/channel estimation scheme.
Resumo:
Non-orthogonal space-time block codes (STBC) from cyclic division algebras (CDA) are attractive because they can simultaneously achieve both high spectral efficiencies (same spectral efficiency as in V-BLAST for a given number of transmit antennas) as well as full transmit diversity. Decoding of non-orthogonal STBCs with hundreds of dimensions has been a challenge. In this paper, we present a probabilistic data association (PDA) based algorithm for decoding non-orthogonal STBCs with large dimensions. Our simulation results show that the proposed PDA-based algorithm achieves near SISO AWGN uncoded BER as well as near-capacity coded BER (within 5 dB of the theoretical capacity) for large non-orthogonal STBCs from CDA. We study the effect of spatial correlation on the BER, and show that the performance loss due to spatial correlation can be alleviated by providing more receive spatial dimensions. We report good BER performance when a training-based iterative decoding/channel estimation is used (instead of assuming perfect channel knowledge) in channels with large coherence times. A comparison of the performances of the PDA algorithm and the likelihood ascent search (LAS) algorithm (reported in our recent work) is also presented.
Resumo:
Oxides of the families Ba3ZnTa2-xNbxO9 and Ba3MgTa2-xNbxO9 were obtained by the solid state reaction route at 1573 K and were found to crystallize in the disordered (cubic) perovskite structure. In Ba3ZnTa2-xNbXO9 and Ba3MgTa2-xNbxO9 the entire range (0 less than or equal to x less than or equal to 1) of solid solutions could be synthesized. The dielectric constant decreases with increase in frequency for all compositions in the range 40 Hz to 100 kHz (epsilon (r) varies from 16 to 22). The dielectric loss (D) shows a broad maximum for both Ba3ZnTa2-xNbxO9 and Ba3MgTa2-xNbxO9. The maxima is centered around 2 kHz in the former and near 10 kHz in the latter. (C) 2001 Elsevier Science Ltd. All sights reserved.
Resumo:
Preferential cleavage of active genes by DNase I has been correlated with a structurally altered conformation of DNA at the hypersensitive site in chromatin. To have a better understanding of the structural requirements for gene activation as probed by DNase I action, digestability by DNase I of synthetic polynucleotides having the ability to adopt B and non-B conformation (like Z-form) was studied which indicated a marked higher digestability of the B-form of DNA. Left handed Z form present within a natural sequence in supercoiled plasmid also showed marked resistance towards DNase I digestion. We show that alternating purine-pyrimidine sequences adopting Z-conformation exhibit DNAse I foot printing even in a protein free system. The logical deductions from the results indicate that 1) altered structure like Z-DNA is not a favourable substrate for DNase I, 2) both the ends of the alternating purine-pyrimidine insert showed hypersensitivity, 3) B-form with a minor groove of 12-13 A is a more favourable substrate for DNase I than an altered structure, 4) any structure of DNA deviating largely from B form with a capacity to flip over to the B-form are potential targets for the DNase I enzymic probes in naked DNA.