932 resultados para Stochastic simulation methods
Resumo:
We present in this paper ideas to tackle the problem of analysing and forecasting nonstationary time series within the financial domain. Accepting the stochastic nature of the underlying data generator we assume that the evolution of the generator's parameters is restricted on a deterministic manifold. Therefore we propose methods for determining the characteristics of the time-localised distribution. Starting with the assumption of a static normal distribution we refine this hypothesis according to the empirical results obtained with the methods anc conclude with the indication of a dynamic non-Gaussian behaviour with varying dependency for the time series under consideration.
Resumo:
We discuss the Application of TAP mean field methods known from Statistical Mechanics of disordered systems to Bayesian classification with Gaussian processes. In contrast to previous applications, no knowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given.
Resumo:
Machine breakdowns are one of the main sources of disruption and throughput fluctuation in highly automated production facilities. One element in reducing this disruption is ensuring that the maintenance team responds correctly to machine failures. It is, however, difficult to determine the current practice employed by the maintenance team, let alone suggest improvements to it. 'Knowledge based improvement' is a methodology that aims to address this issue, by (a) eliciting knowledge on current practice, (b) evaluating that practice and (c) looking for improvements. The methodology, based on visual interactive simulation and artificial intelligence methods, and its application to a Ford engine assembly facility are described. Copyright © 2002 Society of Automotive Engineers, Inc.
Resumo:
The performance of most operations systems is significantly affected by the interaction of human decision-makers. A methodology, based on the use of visual interactive simulation (VIS) and artificial intelligence (AI), is described that aims to identify and improve human decision-making in operations systems. The methodology, known as 'knowledge-based improvement' (KBI), elicits knowledge from a decision-maker via a VIS and then uses AI methods to represent decision-making. By linking the VIS and AI representation, it is possible to predict the performance of the operations system under different decision-making strategies and to search for improved strategies. The KBI methodology is applied to the decision-making surrounding unplanned maintenance operations at a Ford Motor Company engine assembly plant.
Resumo:
Simulation modelling has been used for many years in the manufacturing sector but has now become a mainstream tool in business situations. This is partly because of the popularity of business process re-engineering (BPR) and other process based improvement methods that use simulation to help analyse changes in process design. This textbook includes case studies in both manufacturing and service situations to demonstrate the usefulness of the approach. A further reason for the increasing popularity of the technique is the development of business orientated and user-friendly Windows-based software. This text provides a guide to the use of ARENA, SIMUL8 and WITNESS simulation software systems that are widely used in industry and available to students. Overall this text provides a practical guide to building and implementing the results from a simulation model. All the steps in a typical simulation study are covered including data collection, input data modelling and experimentation.
Resumo:
This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.
Resumo:
Stochastic differential equations arise naturally in a range of contexts, from financial to environmental modeling. Current solution methods are limited in their representation of the posterior process in the presence of data. In this work, we present a novel Gaussian process approximation to the posterior measure over paths for a general class of stochastic differential equations in the presence of observations. The method is applied to two simple problems: the Ornstein-Uhlenbeck process, of which the exact solution is known and can be compared to, and the double-well system, for which standard approaches such as the ensemble Kalman smoother fail to provide a satisfactory result. Experiments show that our variational approximation is viable and that the results are very promising as the variational approximate solution outperforms standard Gaussian process regression for non-Gaussian Markov processes.
Resumo:
Open-loop operatlon of the stepping motor exploits the inherent advantages of the machine. For near optimum operation: in this mode, however, an accurate system model is required to facilitate controller design. Such a model must be comprehensive and take account of the non-linearities inherent in the system. The result is a complex formulation which can be made manageable with a computational aid. A digital simulation of a hybrid type stepping motor and its associated drive circuit is proposed. The simulation is based upon a block diagram model which includes reasonable approximations to the major non-linearities. The simulation is shown to yield accurate performance predictions. The determination of the transfer functions is based upon the consideration of the physical processes involved rather than upon direct input-outout measurements. The effects of eddy currents, saturation, hysteresis, drive circuit characteristics and non-linear torque displacement characteristics are considered and methods of determining transfer functions, which take account of these effects, are offered. The static torque displacement characteristic is considered in detail and a model is proposed which predicts static torque for any combination of phase currents and shaft position. Methods of predicting the characteristic directly from machine geometry are investigated. Drive circuit design for high efficiency operation is considered and a model of a bipolar, bilevel circuit is proposed. The transfers between stator voltage and stator current and between stator current and air gap flux are complicated by the effects of eddy currents, saturation and hysteresis. Frequency response methods, combined with average inductance measurements, are shown to yield reasonable transfer functions. The modelling procedure and subsequent digital simulation is concluded to be a powerful method of non-linear analysis.
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
In this paper we present a novel method for emulating a stochastic, or random output, computer model and show its application to a complex rabies model. The method is evaluated both in terms of accuracy and computational efficiency on synthetic data and the rabies model. We address the issue of experimental design and provide empirical evidence on the effectiveness of utilizing replicate model evaluations compared to a space-filling design. We employ the Mahalanobis error measure to validate the heteroscedastic Gaussian process based emulator predictions for both the mean and (co)variance. The emulator allows efficient screening to identify important model inputs and better understanding of the complex behaviour of the rabies model.