928 resultados para Stimulation magnétique transcrânienne
Resumo:
Objective: To assess the neuropsychological outcome as a safety measure and quality control in patients with subthalamic nucleus (STN) stimulation for PD. Background: Deep brain stimulation (DBS) is considered a relatively safe treatment used in patients with movement disorders. However, neuropsychological alterations have been reported in patients with STN DBS for PD. Cognition and mood are important determinants of quality of life in PD patients and must be assessed for safety control. Methods: Seventeen consecutive patients (8 women) who underwent STN DBS for PD have been assessed before and 4 months after surgery. Besides motor symptoms (UPDRS-III), mood (Beck Depression Inventory, Hamilton Depression Rating Scale) and neuropsychological aspects, mainly executive functions, have been assessed (mini mental state examination, semantic and phonematic verbal fluency, go-no go test, stroop test, trail making test, tests of alertness and attention, digit span, wordlist learning, praxia, Boston naming test, figure drawing, visual perception). Paired t-tests were used for comparisons before and after surgery. Results: Patients were 61.6±7.8 years old at baseline assessment. All surgeries were performed without major adverse events. Motor symptoms ‘‘on’’ medication remained stable whereas they improved in the ‘‘off’’ condition (p<0.001). Mood was not depressed before surgery and remained unchanged at follow-up. All neuropsychological assessment outcome measures remained stable at follow-up with the exception of semantic verbal fluency and wordlist learning. Semantic verbal fluency decreased by 21±16% (p<0.001) and there was a trend to worse phonematic verbal fluency after surgery (p=0.06). Recall of a list of 10 words was worse after surgery only for the third attempt of recall (13%, p<0.005). Conclusions: Verbal fluency decreased in our patients after STN DBS, as previously reported. The procedure was otherwise safe and did not lead to deterioration of mood.
Resumo:
One of the leading approaches to non-invasively treat a variety of brain disorders is transcranial magnetic stimulation (TMS). However, despite its clinical prevalence, very little is known about the action of TMS at the cellular level let alone what effect it might have at the subcellular level (e.g. dendrites). Here, we examine the effect of single-pulse TMS on dendritic activity in layer 5 pyramidal neurons of the somatosensory cortex using an optical fiber imaging approach. We find that TMS causes GABAB-mediated inhibition of sensory-evoked dendritic Ca(2+) activity. We conclude that TMS directly activates fibers within the upper cortical layers that leads to the activation of dendrite-targeting inhibitory neurons which in turn suppress dendritic Ca(2+) activity. This result implies a specificity of TMS at the dendritic level that could in principle be exploited for investigating these structures non-invasively.
Resumo:
Hemophilia A is a clotting disorder caused by functional factor VIII (FVIII) deficiency. About 25% of patients treated with therapeutic recombinant FVIII develop antibodies (inhibitors) that render subsequent FVIII treatments ineffective. The immune mechanisms of inhibitor formation are not entirely understood, but circumstantial evidence indicates a role for increased inflammatory response, possibly via stimulation of Toll-like receptors (TLRs), at the time of FVIII immunization. I hypothesized that stimulation through TLR4 in conjunction with FVIII treatments would increase the formation of FVIII inhibitors. To test this hypothesis, FVIII K.O. mice were injected with recombinant human FVIII with or without concomitant doses of TLR4 agonist (lipopoysaccharide; LPS). The addition of LPS combined with FVIII significantly increased the rate and the production of anti-FVIII IgG antibodies and neutralizing FVIII inhibitors. In the spleen, repeated in vivo TLR4 stimulation with LPS increased the relative percentage of macrophages and dendritic cells (DCs) over the course of 4 injections. However, repeated in vivo FVIII stimulation significantly increased the density of TLR4 expressed on the surface of all spleen antigen presenting cells (APCs). Culture of splenocytes isolated from mice revealed that the combined stimulation of LPS and FVIII also synergistically increased early secretion of the inflammatory cytokines IL-6, TNF-α, and IL-10, which was not maintained throughout the course of the repeated injections. While cytokine secretion was relatively unchanged in response to FVIII re-stimulation in culture, LPS re-stimulation in culture induced increased and prolonged inflammatory cytokine secretion. Re-stimulation with both LPS and FVIII induced cytokine secretion similar to LPS stimulation alone. Interestingly, long term treatment of mice with LPS alone resulted in splenocytes that showed reduced response to FVIII in culture. Together these results indicated that creating a pro-inflammatory environment through the combined stimulation of chronic, low-dose LPS and FVIII changed not only the populations but also the repertoire of APCs in the spleen, triggering the increased production of FVIII inhibitors. These results suggested an anti-inflammatory regimen should be instituted for all hemophilia A patients to reduce or delay the formation of FVIII inhibitors during replacement therapy.
Resumo:
To answer the question whether increased energy demand resulting from myocyte hypertrophy and enhanced $\beta$-myosin heavy chain mRNA, contractile protein synthesis and assembly leads to mitochondrial proliferation and differentiation, we set up an electrical stimulation model of cultured neonatal rat cardiac myocytes. We describe, as a result of increased contractile activity, increased mitochondrial profiles, cytochrome oxidase mRNA, and activity, as well as a switch in mitochondrial carnitine palmitoyltransferase-I (CPT-I) from the liver to muscle isoform. We investigate physiological pathways that lead to accumulation of gene transcripts for nuclear encoded mitochondrial proteins in the heart. Cardiomyocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation (c-fos, c-jun, junB, nuclear respiratory factor 1 (Nrf-1)), mitochondrial proliferation (cytochrome c (Cyt c), cytochrome oxidase), and mitochondrial differentiation (carnitine palmitonyltransferase I (CPT-I) isoforms) were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25-3 hr) and followed by c-jun (0.5-3 hr), junB (0.5-6 hr), NRF-1 (1-12 hr), Cyt c (12-72 hr), cytochrome c oxidase (12-72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA. Electrical stimulation increased c-fos, $\beta$-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element (CRE), and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the Nrf-1 and CRE sites inhibited the induction by electrical stimulation or by transfection of c-jun into non-paced cardiac myocytes whereas mutation of the Sp-1 site maintained or increased the fold induction. This is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c. Overexpression of c-jun by transfection also activates the Nrf-1 and Cyt c mRNA sequentially. Electrical stimulation of cardiac myocytes activates the c-Jun-N-terminal kinase so that the fold-activation of the cyt c promoter is increased by pacing when either c-jun or c-fos/c-jun are cotransfected. We have identified physical association of Nrf-1 protein with the Nrf-1 enhancer element and of c-Jun with the CRE binding sites on the Cyt c promoter. This is the first demonstration that induction of Nrf-1 and c-Jun by pacing of cardiac myocytes directly mediates Cyt c gene expression and mitochondrial proliferation in response to hypertrophic stimuli in the heart.^ Subsequent to gene activation pathways that lead to mitochondrial proliferation, we observed an isoform switch in CPT-I from the liver to muscle mRNA. We have found that the half-life for the muscle CPT-I is not affected by electrical stimulation, but electrical decrease the T1/2 in the liver CPT-I by greater than 50%. This suggests that the liver CPT-I switch to muscle isoform is due to (1) a decrease in T1/2 of liver CPT-I and (2) activation of muscle CPT-Itranscripts by electrical stimulation. (Abstract shortened by UMI.) ^
Resumo:
In this paper the hardware implementation of an inner hair cell model is presented. Main features of the design are the use of Meddis’ transduction structure and the methodology for Design with Reusability. Which allows future migration to new hardware and design refinements for speech processing and custom-made hearing aids
Resumo:
Descripción y evaluación de sistema de estimulación cognitiva a través de la TDT orientada a personas con enfermedad de Parkinson, con supervisión por parte de sus terapeutas de forma remota. Abstract: This paper details the full design, implementation, and validation of an e-health service in order to improve the community health care services for patients with cognitive disorders. Specifically, the new service allows Parkinson’s disease patients benefit from the possibility of doing cognitive stimulation therapy (CST) at home by using a familiar device such as a TV set. Its use instead of a PC could be a major advantage for some patients whose lack of familiarity with the use of a PC means that they can do therapy only in the presence of a therapist. For these patients this solution could bring about a great improvement in their autonomy. At the same time, this service provides therapists with the ability to conduct follow-up of therapy sessions via the web,benefiting from greater and easier control of the therapy exercises performed by patients and allowing them to customize new exercises in accordance with the particular needs of each patient. As a result, this kind of CST is considered to be a complement of other therapies oriented to the Parkinson patients. Furthermore, with small changes, the system could be useful for patients with a different cognitive disease such as Alzheimer’s or mild cognitive impairment.
Resumo:
When two pure tones of slightly different frequency are presented separately to each ear, the listener perceives a third single tone with amplitude variations at a frequency that equals the difference between the two tones, this perceptual illusion is known as binaural auditory beat. There are anecdotal reports that suggest that the binaural beat can entrain EEG activity and may affect the arousal levels, although few studies have been published. There is a need for double-blind, well-designed studies in order to establish a solid foundation for these sounds, as most of the documented benefits come from self-reported cases that could be affected by placebo effect. As BB’s are a cheap technology (it even exists a free open source programmable bin aural-beat generator on the internet named Gnaural), any achievement in this area could be of public interest. The aim in our research was to explore the potential of BB’s in a particular field: tasks that require focus and concentration. In order to detect changes in the brain waves that could relate to any particular improvement, EEG recordings of a small sample of individuals were also obtained. In this study we compare the effect of different binaural stimulation in 7 EEG frequency ranges, 78 participants were exposed to 20 min binaural beat stimulation. The effects were obtained both qualitative with cognitive test and quantitative with EEG analysis. Results suggest no significant statistical improvement in 20 min stimulation.
Resumo:
The precise pathophysiology of fibromyalgia, a syndrome characterized by, among other symptoms, chronic widespread pain, remains to be elucidated (Abeles et al., 2007). The fact that, when subjected to the same amount of stimulation, patients show enhanced brain responses as compared to controls provides evidence of central pain augmentation in this syndrome. We aimed to characterize brain response differences when stimulation is adjusted to elicit similar subjective levels of pain in both groups.
Resumo:
When two pure tones of slightly different frequency are presented separately to each ear, the listener perceives a third single tone with amplitude variations at a frequency that equals the difference between the two tones; this perceptual illusion is known as the binaural auditory beat (BB). There are anecdotal reports that suggest that the binaural beat can entrain EEG activity and may affect the arousal levels, although few studies have been published. There is a need for double-blind, well-designed studies in order to establish a solid foundation for these sounds, as most of the documented benefits come from self-reported cases that could be affected by placebo effect. As BBs are a cheap technology (it even exists a free open source programmable binaural- beat generator on the Internet named Gnaural), any achievement in this area could be of public interest. The aim in our research was to explore the potential of BBs in a particular field: tasks that require focus and concentration. In order to detect changes in the brain waves that could relate to any particular improvement, EEG recordings of a small sample of individuals were also obtained. In this study we compare the effect of different binaural stimulation in 7 EEG frequency ranges. 78 participants were exposed to 20-min binaural beat stimulation. The effects were obtained both quali- tative with cognitive test and quantitative with EEG analysis. Results suggest no significant statistical improvement in 20-min stimulation.
Resumo:
Transcranial static magnetic field stimulation (tSMS) in humans reduces cortical excitability. Objective: The objective of this study was to determine if prolonged tSMS (2 h) could be delivered safely in humans. Safety limits for this technique have not been described. Methods: tSMS was applied for 2 h with a cylindric magnet on the occiput of 17 healthy subjects. We assessed tSMS-related safety aspects at tissue level by measuring levels of neuron-specific enolase (NSE,a marker of neuronal damage) and S100 (a marker of glial reactivity and damage). We also included an evaluation of cognitive side effects by using a battery of visuomotor and cognitive tests. Results: tSMS did not induce any significant increase in NSE or S100. No cognitive alteration was detected. Conclusions: Our data indicate that the application of tSMS is safe in healthy human subjects, at least within these parameters
Resumo:
This study aimed to characterize the cellular pathways along which nitric oxide (NO) stimulates renin secretion from the kidney. Using the isolated perfused rat kidney model we found that renin secretion stimulated 4- to 8-fold by low perfusion pressure (40 mmHg), by macula densa inhibition (100 μmol/liter of bumetanide), and by adenylate cyclase activation (3 nmol/liter of isoproterenol) was markedly attenuated by the NO synthase inhibitor nitro-l-arginine methyl ester (l-Name) (1 mM) and that the inhibition by l-Name was compensated by the NO-donor sodium nitroprusside (SNP) (10 μmol/liter). Similarly, inhibition of cAMP degradation by blockade of phosphodiesterase 1 (PDE-1) (20 μmol/liter of 8-methoxymethyl-1-methyl-3-(2-methylpropyl)xanthine) or of PDE-4 (20 μmol/liter of rolipram) caused a 3- to 4-fold stimulation of renin secretion that was attenuated by l-Name and that was even overcompensated by sodium nitroprusside. Inhibition of PDE-3 by 20 μmol/liter of milrinone or by 200 nmol/liter of trequinsin caused a 5- to 6-fold stimulation of renin secretion that was slightly enhanced by NO synthase inhibition and moderately attenuated by NO donation. Because PDE-3 is a cGMP-inhibited cAMP-PDE the role of endogenous cGMP for the effects of NO was examined by the use of the specific guanylate cyclase inhibitor 1-H-(1,2,4)oxodiazolo(4,3a)quinoxalin-1-one (20 μmol). In the presence of 1H-[1,2,4]oxodiazolo[4,3-a]quinoxalin-1-one the effect of NO on renin secretion was abolished, whereas PDE-3 inhibitors exerted their normal effects. These findings suggest that PDE-3 plays a major role for the cAMP control of renin secretion. Our findings are compatible with the idea that the stimulatory effects of endogenous and exogenous NO on renin secretion are mediated by a cGMP-induced inhibition of cAMP degradation.
Resumo:
Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer—oxidized polypyrrole (PP)—has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μm (n = 5643) compared with 9.5 μm (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-co-glycolic acid).
Resumo:
Using the full-length and two engineered soluble forms (C1-C2 and Cla-C2) of type V adenylyl cyclase (ACV), we have investigated the role of an intramolecular interaction in ACV that modulates the ability of the α subunit of the stimulatory GTP-binding protein of AC (Gsα) to stimulate enzyme activity. Concentration–response curves with Gsα suggested the presence of high and low affinity sites on ACV, which interact with the G protein. Activation of enzyme by Gsα interaction at these two sites was most apparent in the C1a-C2 form of ACV, which lacks the C1b region (K572–F683). Yeast two-hybrid data demonstrated that the C1b region interacted with the C2 region and its 64-aa subdomain, C2I. Using peptides corresponding to the C2I region of ACV, we investigated the role of the C1b/C2I interaction on Gsα-mediated stimulation of C1-C2 and full-length ACV. Our data demonstrate that a 10-aa peptide corresponding to L1042–T1051 alters the profile of the activation curves of full-length and C1-C2 forms of ACV by different Gsα concentrations to mimic the activation profile observed with C1a-C2 ACV. The various peptides used in our studies did not alter forskolin-mediated stimulation of full-length and C1-C2 forms of ACV. We conclude that the C1b region of ACV interacts with the 10-aa region (L1042–T1051) in the C2 domain of the enzyme to modulate Gsα-elicited stimulation of activity.