950 resultados para Statistical mixture-design optimization
Resumo:
This is the second part of a study investigating a model-based transient calibration process for diesel engines. The first part addressed the data requirements and data processing required for empirical transient emission and torque models. The current work focuses on modelling and optimization. The unexpected result of this investigation is that when trained on transient data, simple regression models perform better than more powerful methods such as neural networks or localized regression. This result has been attributed to extrapolation over data that have estimated rather than measured transient air-handling parameters. The challenges of detecting and preventing extrapolation using statistical methods that work well with steady-state data have been explained. The concept of constraining the distribution of statistical leverage relative to the distribution of the starting solution to prevent extrapolation during the optimization process has been proposed and demonstrated. Separate from the issue of extrapolation is preventing the search from being quasi-static. Second-order linear dynamic constraint models have been proposed to prevent the search from returning solutions that are feasible if each point were run at steady state, but which are unrealistic in a transient sense. Dynamic constraint models translate commanded parameters to actually achieved parameters that then feed into the transient emission and torque models. Combined model inaccuracies have been used to adjust the optimized solutions. To frame the optimization problem within reasonable dimensionality, the coefficients of commanded surfaces that approximate engine tables are adjusted during search iterations, each of which involves simulating the entire transient cycle. The resulting strategy, different from the corresponding manual calibration strategy and resulting in lower emissions and efficiency, is intended to improve rather than replace the manual calibration process.
Resumo:
A central design challenge facing network planners is how to select a cost-effective network configuration that can provide uninterrupted service despite edge failures. In this paper, we study the Survivable Network Design (SND) problem, a core model underlying the design of such resilient networks that incorporates complex cost and connectivity trade-offs. Given an undirected graph with specified edge costs and (integer) connectivity requirements between pairs of nodes, the SND problem seeks the minimum cost set of edges that interconnects each node pair with at least as many edge-disjoint paths as the connectivity requirement of the nodes. We develop a hierarchical approach for solving the problem that integrates ideas from decomposition, tabu search, randomization, and optimization. The approach decomposes the SND problem into two subproblems, Backbone design and Access design, and uses an iterative multi-stage method for solving the SND problem in a hierarchical fashion. Since both subproblems are NP-hard, we develop effective optimization-based tabu search strategies that balance intensification and diversification to identify near-optimal solutions. To initiate this method, we develop two heuristic procedures that can yield good starting points. We test the combined approach on large-scale SND instances, and empirically assess the quality of the solutions vis-à-vis optimal values or lower bounds. On average, our hierarchical solution approach generates solutions within 2.7% of optimality even for very large problems (that cannot be solved using exact methods), and our results demonstrate that the performance of the method is robust for a variety of problems with different size and connectivity characteristics.
Digital signal processing and digital system design using discrete cosine transform [student course]
Resumo:
The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.
Does published orthodontic research account for clustering effects during statistical data analysis?
Resumo:
In orthodontics, multiple site observations within patients or multiple observations collected at consecutive time points are often encountered. Clustered designs require larger sample sizes compared to individual randomized trials and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this study to assess to what degree clustering effects are considered during design and data analysis in the three major orthodontic journals. The contents of the most recent 24 issues of the American Journal of Orthodontics and Dentofacial Orthopedics (AJODO), Angle Orthodontist (AO), and European Journal of Orthodontics (EJO) from December 2010 backwards were hand searched. Articles with clustering effects and whether the authors accounted for clustering effects were identified. Additionally, information was collected on: involvement of a statistician, single or multicenter study, number of authors in the publication, geographical area, and statistical significance. From the 1584 articles, after exclusions, 1062 were assessed for clustering effects from which 250 (23.5 per cent) were considered to have clustering effects in the design (kappa = 0.92, 95 per cent CI: 0.67-0.99 for inter rater agreement). From the studies with clustering effects only, 63 (25.20 per cent) had indicated accounting for clustering effects. There was evidence that the studies published in the AO have higher odds of accounting for clustering effects [AO versus AJODO: odds ratio (OR) = 2.17, 95 per cent confidence interval (CI): 1.06-4.43, P = 0.03; EJO versus AJODO: OR = 1.90, 95 per cent CI: 0.84-4.24, non-significant; and EJO versus AO: OR = 1.15, 95 per cent CI: 0.57-2.33, non-significant). The results of this study indicate that only about a quarter of the studies with clustering effects account for this in statistical data analysis.
Resumo:
Development of novel implants in orthopaedic trauma surgery is based on limited datasets of cadaver trials or artificial bone models. A method has been developed whereby implants can be constructed in an evidence based method founded on a large anatomic database consisting of more than 2.000 datasets of bones extracted from CT scans. The aim of this study was the development and clinical application of an anatomically pre-contoured plate for the treatment of distal fibular fractures based on the anatomical database. 48 Caucasian and Asian bone models (left and right) from the database were used for the preliminary optimization process and validation of the fibula plate. The implant was constructed to fit bilaterally in a lateral position of the fibula. Then a biomechanical comparison of the designed implant to the current gold standard in the treatment of distal fibular fractures (locking 1/3 tubular plate) was conducted. Finally, a clinical surveillance study to evaluate the grade of implant fit achieved was performed. The results showed that with a virtual anatomic database it was possible to design a fibula plate with an optimized fit for a large proportion of the population. Biomechanical testing showed the novel fibula plate to be superior to 1/3 tubular plates in 4-point bending tests. The clinical application showed a very high degree of primary implant fit. Only in a small minority of cases further intra-operative implant bending was necessary. Therefore, the goal to develop an implant for the treatment of distal fibular fractures based on the evidence of a large anatomical database could be attained. Biomechanical testing showed good results regarding the stability and the clinical application confirmed the high grade of anatomical fit.
Resumo:
In this paper we present a new population-based implant design methodology, which advances the state-of-the-art approaches by combining shape and bone quality information into the design strategy. The method may enhance the mechanical stability of the fixation and reduces the intra-operative in-plane bending which might impede the functionality of the locking mechanism. The computational method is presented for the case of mandibular locking fixation plates, where the mandibular angle and the bone quality at screw locations are taken into account. The method automatically derives the mandibular angle and the bone thickness and intensity values at the path of every screw from a set of computed tomography images. An optimization strategy is then used to optimize the two parameters of plate angle and screw position. The method was applied to two populations of different genders. Results for the new design are presented along with a comparison with a commercially available mandibular locking fixation plate (MODUS(®) TriLock(®) 2.0/2.3/2.5, Medartis AG, Basel, Switzerland). The proposed designs resulted in a statistically significant improvement in the available bone thickness when compared to the standard plate. There is a higher probability that the proposed implants cover areas of thicker cortical bone without compromising the bone mineral density around the screws. The obtained results allowed us to conclude that an angle and screw separation of 129° and 9 mm for females and 121° and 10 mm for males are more suitable designs than the commercially available 120° and 9 mm.
Resumo:
The quantification of the structural properties of snow is traditionally based on model-based stereology. Model-based stereology requires assumptions about the shape of the investigated structure. Here, we show how the density, specific surface area, and grain boundary area can be measured using a design-based method, where no assumptions about structural properties are necessary. The stereological results were also compared to X-ray tomography to control the accuracy of the method. The specific surface area calculated with the stereological method was 19.8 ± 12.3% smaller than with X-ray tomography. For the density, the stereological method gave results that were 11.7 ± 12.1% larger than X-ray tomography. The statistical analysis of the estimates confirmed that the stereological method and the sampling used are accurate. This stereological method was successfully tested on artificially produced ice beads but also on several snow types. Combining stereology and polarisation microscopy provides a good estimate of grain boundary areas in ice beads and in natural snow, with some limitatio
Resumo:
Common goals in epidemiologic studies of infectious diseases include identification of the infectious agent, description of the modes of transmission and characterization of factors that influence the probability of transmission from infected to uninfected individuals. In the case of AIDS, the agent has been identified as the Human Immunodeficiency Virus (HIV), and transmission is known to occur through a variety of contact mechanisms including unprotected sexual intercourse, transfusion of infected blood products and sharing of needles in intravenous drug use. Relatively little is known about the probability of IV transmission associated with the various modes of contact, or the role that other cofactors play in promoting or suppressing transmission. Here, transmission probability refers to the probability that the virus is transmitted to a susceptible individual following exposure consisting of a series of potentially infectious contacts. The infectivity of HIV for a given route of transmission is defined to be the per contact probability of infection. Knowledge of infectivity and its relationship to other factors is important in understanding the dynamics of the AIDS epidemic and in suggesting appropriate measures to control its spread. The primary source of empirical data about infectivity comes from sexual partners of infected individuals. Partner studies consist of a series of such partnerships, usually heterosexual and monogamous, each composed of an initially infected "index case" and a partner who may or may not be infected by the time of data collection. However, because the infection times of both partners may be unknown and the history of contacts uncertain, any quantitative characterization of infectivity is extremely difficult. Thus, most statistical analyses of partner study data involve the simplifying assumption that infectivity is a constant common to all partnerships. The major objectives of this work are to describe and discuss the design and analysis of partner studies, providing a general statistical framework for investigations of infectivity and risk factors for HIV transmission. The development is largely based on three papers: Jewell and Shiboski (1990), Kim and Lagakos (1990), and Shiboski and Jewell (1992).
Resumo:
We present a framework for statistical finite element analysis combining shape and material properties, and allowing performing statistical statements of biomechanical performance across a given population. In this paper, we focus on the design of orthopaedic implants that fit a maximum percentage of the target population, both in terms of geometry and biomechanical stability. CT scans of the bone under consideration are registered non-rigidly to obtain correspondences in position and intensity between them. A statistical model of shape and intensity (bone density) is computed by means of principal component analysis. Afterwards, finite element analysis (FEA) is performed to analyse the biomechanical performance of the bones. Realistic forces are applied on the bones and the resulting displacement and bone stress distribution are calculated. The mechanical behaviour of different PCA bone instances is compared.
Resumo:
A number of authors have studies the mixture survival model to analyze survival data with nonnegligible cure fractions. A key assumption made by these authors is the independence between the survival time and the censoring time. To our knowledge, no one has studies the mixture cure model in the presence of dependent censoring. To account for such dependence, we propose a more general cure model which allows for dependent censoring. In particular, we derive the cure models from the perspective of competing risks and model the dependence between the censoring time and the survival time using a class of Archimedean copula models. Within this framework, we consider the parameter estimation, the cure detection, and the two-sample comparison of latency distribution in the presence of dependent censoring when a proportion of patients is deemed cured. Large sample results using the martingale theory are obtained. We applied the proposed methodologies to the SEER prostate cancer data.
Resumo:
Correspondence establishment is a key step in statistical shape model building. There are several automated methods for solving this problem in 3D, but they usually can only handle objects with simple topology, like that of a sphere or a disc. We propose an extension to correspondence establishment over a population based on the optimization of the minimal description length function, allowing considering objects with arbitrary topology. Instead of using a fixed structure of kernel placement on a sphere for the systematic manipulation of point landmark positions, we rely on an adaptive, hierarchical organization of surface patches. This hierarchy can be built on surfaces of arbitrary topology and the resulting patches are used as a basis for a consistent, multi-scale modification of the surfaces' parameterization, based on point distribution models. The feasibility of the approach is demonstrated on synthetic models with different topologies.
Resumo:
For the past sixty years, waveguide slot radiator arrays have played a critical role in microwave radar and communication systems. They feature a well-characterized antenna element capable of direct integration into a low-loss feed structure with highly developed and inexpensive manufacturing processes. Waveguide slot radiators comprise some of the highest performance—in terms of side-lobe-level, efficiency, etc. — antenna arrays ever constructed. A wealth of information is available in the open literature regarding design procedures for linearly polarized waveguide slots. By contrast, despite their presence in some of the earliest published reports, little has been presented to date on array designs for circularly polarized (CP) waveguide slots. Moreover, that which has been presented features a classic traveling wave, efficiency-reducing beam tilt. This work proposes a unique CP waveguide slot architecture which mitigates these problems and a thorough design procedure employing widely available, modern computational tools. The proposed array topology features simultaneous dual-CP operation with grating-lobe-free, broadside radiation, high aperture efficiency, and good return loss. A traditional X-Slot CP element is employed with the inclusion of a slow wave structure passive phase shifter to ensure broadside radiation without the need for performance-limiting dielectric loading. It is anticipated this technology will be advantageous for upcoming polarimetric radar and Ka-band SatCom systems. The presented design methodology represents a philosophical shift away from traditional waveguide slot radiator design practices. Rather than providing design curves and/or analytical expressions for equivalent circuit models, simple first-order design rules – generated via parametric studies — are presented with the understanding that device optimization and design will be carried out computationally. A unit-cell, S-parameter based approach provides a sufficient reduction of complexity to permit efficient, accurate device design with attention to realistic, application-specific mechanical tolerances. A transparent, start-to-finish example of the design procedure for a linear sub-array at X-Band is presented. Both unit cell and array performance is calculated via finite element method simulations. Results are confirmed via good agreement with finite difference, time domain calculations. Array performance exhibiting grating-lobe-free, broadside-scanned, dual-CP radiation with better than 20 dB return loss and over 75% aperture efficiency is presented.
Resumo:
This report provides an analysis of the thermal performance and emissions characteristics of improved biomass stoves constructed using earthen materials. Commonly referred to as mud stoves, this type of improved stove incorporates high clay content soil with an organic binder in the construction of its combustion chamber and body. When large quantities of the mud material are used to construct the stove body, the stove does not offer significant improvements in fuel economy or air quality relative to traditional open fire cooking. This is partly because a significant amount of heat is absorbed by the mass of the stove reducing combustion efficiency and heat transfer to the cook pot. An analysis of the thermal and mechanical properties of stove materials was also performed. A material mixture containing a one‐to‐one ratio by volume of high content clay soil and straw was found to have thermal properties comparable to fired ceramics used in more advanced improved stove designs. Feedback from mud stove users in Mauritania and Mali, West Africa was also collected during implementation. Suggestions for stove design improvements were developed based on this information and the data collected in the performance, emissions, and material properties analysis. Design suggestions include reducing stove height to accommodate user cooking preferences and limiting overall stove mass to reduce heat loss to the stove body.