1000 resultados para Stars : formation
Resumo:
The esterification of fragment C1-C8 (2) with fragment C16-C23 (3) to give iodo derivative 4, followed by a Pd-catalysed coupling with a C9-C15 fragment (7 or 8), may provide a common precursor of most palmerolides. Ligands and reaction conditions were exhaustively examined to perform the C15-C16 bond formation via Negishi reaction. With simple models, pre-activated Pd-Xantphos and Pd-DPEphos complexes were the most efficient catalysts at RT. Zincation of the C9-C15 fragment (8) and cross coupling with 4 required 3 equiv of t-BuLi, 10 mol % of Pd-Xantphos and 60 °C.
Resumo:
We present an Analytic Model of Intergalactic-medium and GAlaxy (AMIGA) evolution since the dark ages. AMIGA is in the spirit of the popular semi-analytic models of galaxy formation, although it does not use halo merger trees but interpolates halo properties in grids that are progressively built. This strategy is less memory-demanding and allows one to start modeling at sufficiently high redshifts and low halo masses to have trivial boundary conditions. The number of free parameters is minimized by making a causal connection between physical processes usually treated as independent of each other, which leads to more reliable predictions. However, the strongest points of AMIGA are the following: (1) the inclusion of molecular cooling and metal-poor, population III (Pop III) stars with the most dramatic feedback and (2) accurate follow up of the temperature and volume filling factor of neutral, singly ionized, and doubly ionized regions, taking into account the distinct halo mass functions in those environments. We find the following general results. Massive Pop III stars determine the intergalactic medium metallicity and temperature, and the growth of spheroids and disks is self-regulated by that of massive black holes (MBHs) developed from the remnants of those stars. However, the properties of normal galaxies and active galactic nuclei appear to be quite insensitive to Pop III star properties due to the much higher yield of ordinary stars compared to Pop III stars and the dramatic growth of MBHs when normal galaxies begin to develop, which cause the memory loss of the initial conditions.
Resumo:
Background: Since the use of pneumococcal conjugate vaccines PCV7 and PCV13 in children became widespread, invasive pneumococcal disease (IPD) has dramatically decreased. Nevertheless, there has been a rise in incidence of Streptococcus pneumoniae non-vaccine serotypes (NVT) colonising the human nasopharynx. Nasopharyngeal colonisation, an essential step in the development of S. pneumoniae-induced IPD, is associated with biofilm formation. Although the capsule is the main pneumococcal virulence factor, the formation of pneumococcal biofilms might, in fact, be limited by the presence of capsular polysaccharide (CPS). Methodology/Principal Findings: We used clinical isolates of 16 emerging, non-PCV13 serotypes as well as isogenic transformants of the same serotypes. The biofilm formation capacity of isogenic transformants expressing CPSs from NVT was evaluated in vitro to ascertain whether this trait can be used to predict the emergence of NVT. Fourteen out of 16 NVT analysed were not good biofilm formers, presumably because of the presence of CPS. In contrast, serotypes 11A and 35B formed >45% of the biofilm produced by the non-encapsulated M11 strain. Conclusions/Significance This study suggest that emerging, NVT serotypes 11A and 35B deserve a close surveillance.
Resumo:
An efficient approach for organizing large ad hoc networks is to divide the nodesinto multiple clusters and designate, for each cluster, a clusterhead which is responsible forholding intercluster control information. The role of a clusterhead entails rights and duties.On the one hand, it has a dominant position in front of the others because it manages theconnectivity and has access to other node¿s sensitive information. But on the other hand, theclusterhead role also has some associated costs. Hence, in order to prevent malicious nodesfrom taking control of the group in a fraudulent way and avoid selfish attacks from suitablenodes, the clusterhead needs to be elected in a secure way. In this paper we present a novelsolution that guarantees the clusterhead is elected in a cheat-proof manner.
Resumo:
The electrochemical behavior of the interaction of amodiaquine with DNA on a carbon paste electrode was studied using voltametric techniques. In an acid medium, an electroactive adduct is formed when amodiaquine interacts with DNA. The anodic peak is dependent on pH, scan rate and the concentration of the pharmaceutical. Adduct formation is irreversible in nature, and preferentially occurs by interaction of the amodiaquine with the guanine group. Theoretical calculations for optimization of geometry, and DFT analyses and on the electrostatic potential map (EPM), were used in the investigation of adduct formation between amodiaquine and DNA.
Resumo:
Cefdinir has broad spectrum of activity and high prescription rates, hence its counterfeiting seems imminent. We have proposed a simple, fast, selective and non-extractive spectrophotometric method for the content assay of cefdinir in formulations. The method is based on complexation of cefdinir and Fe under reducing condition in a buffered medium (pH 11) to form a magenta colored donor-acceptor complex (λ max = 550 nm; apparent molar absorptivity = 3720 L mol-1 cm-1). No other cephalosporins, penicillins and common excipients interfere under the test conditions. The Beer's law is followed in the concentration range 8-160 µg mL-1.
Resumo:
This study describes unpublished research on improving the solubility of benznidazole by the formation of an inclusion complex. The cyclodextrins selected were αCD, βCD, γCD, HPβCD, RMβCD and SBβCD. All complexes were obtained in solution, presenting 1:1 stoichiometry according to the phase solubility diagram. The highest association constants were obtained with RMβCD and SBβCD, being selected for attainment of solid state complexes. These were characterized using XRD, SEM and dissolution test. The data obtained suggest the formation of complexes and indicate that these may provide a promising alternative way of developing solid doses of drug with suitable biopharmaceutical properties.
Resumo:
The influence of Anatasa/Rutile ratio on TiO2 films, grown by electrophoretic deposition was studied in the photoassisted electrolytic copper ions removal from cyanide solutions. The proper dispersant dosage allowing the simultaneous electrophoretic deposition of Anatase and Rutile was chosen based on electrokinetic measurements; evidenced by the XRD spectra of the formed films. The evaluation of films photoassisted electrolytic copper ion removal showeds that it is possible to enhance the activity of Anatase films by adding some Rutile exploiting the synergetic interaction between these two materials, achieve by its proper deposition.
Resumo:
A 1µs Molecular Dynamic simulation was performed with a realistic model system of Sodium Dodecyl Sulfate (SDS) micelles in aqueous solution, comprising of 360 DS-, 360 Na+ and 90000 water particles. After 300 ns three different micellar shapes and sizes 41, 68 and 95 monomers, were observed. The process led to stabilization in the total number of SDS clusters and an increase in the micellar radius to 2.23 nm, in agreement with experimental results. An important conclusion, is be aware that simulations employed in one aggregate, should be considered as a constraint. Size and shape distribution must be analyzed.
Resumo:
The development of organic devices based on conducting polymers for biofilm detection requires the combination of superior electrical response and high surface area for biofilm incorporation. Polypyrrole is a potential candidate for application in biofilm detection and control due to its characteristic superior electrical response and strong interaction with bacteria, which enables the use of the bioelectric effect in resulting devices. In this study, chemically synthesized polypyrrole was applied as a support for biofilm growth of S. aureus. Modifications in the electrical response of the polymeric template were explored to identify general mechanisms established during the deposition of the biofilm.
Resumo:
The course of reaction between cerium(III) nitrate and different sodium tungstates (Na2WO4, Na10W12O41 and Na6W12O39) has been followed by means of pH and conductometric titrations between the reactants at different pH levels, in aqueous and alcoholic media, with each of the reagents alternatively used as titrant. The electrometric experiments provide definite evidence of the formation of normal-Ce2O3.3WO3 and para- 5Ce2O3.36WO3 tungstates of cerium in the vicinity of pH 6.2 and 5.3. The formation of normal tungstate is almost quantitative and the pH titrations offer a simple means for determination of cerium(III) or tungstate solutions at suitable concentrations and pH range.
Resumo:
The precise nature of the reaction between nitric acid and sodium ortho-vanadate solutions has been studied by means of electrometric techniques involving potentiometric and conductometric titrations. The well defined inflections and breaks in the titration curves confirm the existence of the anions, pyro-V2O7(4-), meta-VO3- and poly-H2V10O28(4-) corresponding to the ratios of VO4(3-):H+ as 1:1, 1:2 and 1:2.6 in the neighborhood of pH 10.5, 7.4 and 3.6, respectively. The interaction of cerium(III) nitrate with sodium vanadate solutions, at specific pH levels 12.4, 10.5, 7.4 and 3.6 was also studied by potentiometric and conductometric titrations between the reactants. The end-points obtained from the sharp inflections in the titration curves provide definite evidence for the formation and precipitation of cerium ortho-Ce2O3.V2O5, pyro-2Ce2O3.3V2O5 and meta-Ce2O3.3V2O5 vanadates in the neighborhood of pH 7.4, 6.2 and 4.8, respectively. Analytical investigations on the precipitates formed confirm the results of the electrometric study.
Resumo:
Two simple sensitive and cost-effective spectrophotometric methods are described for the determination of lansoprazole (LPZ) in bulk drug and in capsules using ceric ammonium sulphate (CAS), iron (II), orthophenanthroline and thiocyanate as reagents. In both methods, an acidic solution of lansoprazole is treated with a measured excess of CAS followed by the determination of unreacted oxidant by two procedures involving different reaction schemes. The first method involves the reduction of residual oxidant by a known amount of iron(II), and the unreacted iron(II) is complexed with orthophenanthroline at a raised pH, and the absorbance of the resulting complex measured at 510 nm (method A). In the second method, the unreacted CAS is reduced by excess of iron (II), and the resulting iron (III) is complexed with thiocyanate in the acid medium and the absorbance of the complex measured at 470 nm (method B). In both methods, the amount CAS reacted corresponds to the amount of LPZ. In method A, the absorbance is found to increase linearly with the concentration of LPZ where as in method B a linear decrease in absorbance occurs. The systems obey Beer's law for 2.5-30 and 2.5-25 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 8.1×10³ and 1.5×10(4) L mol-1cm-1 . The methods were successfully applied to the determination of LPZ in capsules and the results tallied well with the label claim. No interference was observed from the concomitant substances normally added to capsules.
Resumo:
Specific combustion programs (Gaseq, Chemical equilibria in perfect gases, Chris Morley) are used to model dioxin and formation in the incineration processes of urban solid wastes. Thanks to these programs, it is possible to establish correlations with the formation mechanisms postulated in literature on the subject. It was found that minimum oxygen quantities are required to obtain a significant formation of these compounds and that more furans than dioxins are formed. Likewise, dioxin and furan formation is related to the presence of carbon monoxide, and dioxin and furan distribution among its different compounds depends on the chlorine and hydrogen relative composition. This is due to the fact that an increased chlorine availability leads to the formation of compounds bearing a higher chlorine concentration (penta-, hexa-, hepta-, and octachlorides), whereas an increased hydrogen availability leads to the formation of compounds bearing a lower chlorine number (mono, di-, tri-, and tetrachlorides).