894 resultados para Stars: mass-loss
Resumo:
We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.
Resumo:
The gastrointestinal tract plays an important role in the improved appetite control and weight loss in response to bariatric surgery. Other strategies which similarly alter gastrointestinal responses to food intake could contribute to successful weight management. The aim of this review is to discuss the effects of surgical, pharmacological and behavioural weight loss interventions on gastrointestinal targets of appetite control, including gastric emptying. Gastrointestinal peptides are also discussed because of their integrative relationship in appetite control. This review shows that different strategies exert diverse effects and there is no consensus on the optimal strategy for manipulating gastric emptying to improve appetite control. Emerging evidence from surgical procedures (e.g., sleeve gastrectomy and Roux en-Y gastric bypass) suggests a faster emptying rate and earlier delivery of nutrients to the distal small intestine may improve appetite control. Energy restriction slows gastric emptying, while the effect of exercise-induced weight loss on gastric emptying remains to be established. The limited evidence suggests that chronic exercise is associated with faster gastric emptying which we hypothesise will impact on appetite control and energy balance. Understanding how behavioural weight loss interventions (e.g., diet and exercise) alter gastrointestinal targets of appetite control may be important to improve their success in weight management.
Resumo:
Cell based therapies require cells capable of self renewal and differentiation, and a prerequisite is the ability to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies is therefore an integral part of tissue engineering. Bone marrow is the most easily accessible source of mesenchymal stem cells (MSCs), and harbours two distinct populations of adult stem cells; namely hematopoietic stem cells (HSCs) and bone mesenchymal stem cells (BMSCs). Unlike HSCs, there are yet no rigorous criteria for characterizing BMSCs. Changing understanding about the pluripotency of BMSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to BMSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their in vitro study. Also, when BMSCs are cultured in vitro there is a loss of the in vivo microenvironment which results in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage number, characterized by the onset of senescence related changes. Accordingly, establishing protocols for generating large numbers of BMSCs without affecting their differentiation potential is necessary. The principal aims of this thesis were to identify potential molecular factors for characterizing BMSCs from osteoarthritic patients, and also to attempt to establish culture protocols favourable for generating large number of BMSCs, while at the same time retaining their proliferation and differentiation potential. Previously published studies concerning clonal cells have demonstrated that BMSCs are heterogeneous populations of cells at various stages of growth. Some cells are higher in the hierarchy and represent the progenitors, while other cells occupy a lower position in the hierarchy and are therefore more committed to a particular lineage. This feature of BMSCs was made evident by the work of Mareddy et al., which involved generating clonal populations of BMSCs from bone marrow of osteoarthritic patients, by a single cell clonal culture method. Proliferation potential and differentiation capabilities were used to group cells into fast growing and slow growing clones. The study presented here is a continuation of the work of Mareddy et al. and employed immunological and array based techniques to identify the primary molecular factors involved in regulating phenotypic characteristics exhibited by contrasting clonal populations. The subtractive immunization (SI) was used to generate novel antibodies against favourably expressed proteins in the fast growing clonal cell population. The difference between the clonal populations at the transcriptional level was determined using a Stem Cell RT2 Profiler TM PCR Array which focuses on stem cell pathway gene expression. Monoclonal antibodies (mAb) generated by SI were able to effectively highlight differentially expressed antigenic determinants, as was evident by Western blot analysis and confocal microscopy. Co-immunoprecipitation, followed by mass spectroscopy analysis, identified a favourably expressed protein as the cytoskeletal protein vimentin. The stem cell gene array highlighted genes that were highly upregulated in the fast growing clonal cell population. Based on their functions these genes were grouped into growth factors, cell fate determination and maintenance of embryonic and neural stem cell renewal. Furthermore, on a closer analysis it was established that the cytoskeletal protein vimentin and nine out of ten genes identified by gene array were associated with chondrogenesis or cartilage repair, consistent with the potential role played by BMSCs in defect repair and maintaining tissue homeostasis, by modulating the gene expression pattern to compensate for degenerated cartilage in osteoarthritic tissues. The gene array also presented transcripts for embryonic lineage markers such as FOXA2 and Sox2, both of which were significantly over expressed in fast growing clonal populations. A recent groundbreaking study by Yamanaka et al imparted embryonic stem cell (ESCs) -like characteristic to somatic cells in a process termed nuclear reprogramming, by the ectopic expression of the genes Sox2, cMyc and Oct4. The expression of embryonic lineage markers in adult stem cells may be a mechanism by which the favourable behaviour of fast growing clonal cells is determined and suggests a possible active phenomenon of spontaneous reprogramming in fast growing clonal cells. The expression pattern of these critical molecular markers could be indicative of the competence of BMSCs. For this reason, the expression pattern of Sox2, Oct4 and cMyc, at various passages in heterogeneous BMSCs population and tissue derived cells (osteoblasts and chondrocytes), was investigated by a real-time PCR and immunoflourescence staining. A strong nuclear staining was observed for Sox2, Oct4 and cMyc, which gradually weakened accompanied with cytoplasmic translocation after several passage. The mRNA and protein expression of Sox2, Oct4 and cMyc peaked at the third passage for osteoblasts, chondrocytes and third passage for BMSCs, and declined with each subsequent passage, indicating towards a possible mechanism of spontaneous reprogramming. This study proposes that the progressive decline in proliferation potential and multipotentiality associated with increased passaging of BMSCs in vitro might be a consequence of loss of these propluripotency factors. We therefore hypothesise that the expression of these master genes is not an intrinsic cell function, but rather an outcome of interaction of the cells with their microenvironment; this was evident by the fact that when removed from their in vivo microenvironment, BMSCs undergo a rapid loss of stemness after only a few passages. One of the most interesting aspects of this study was the integration of factors in the culture conditions, which to some extent, mimicked the in vivo microenvironmental niche of the BMSCs. A number of studies have successfully established that the cellular niche is not an inert tissue component but is of prime importance. The total sum of stimuli from the microenvironment underpins the complex interplay of regulatory mechanisms which control multiple functions in stem cells most importantly stem cell renewal. Therefore, well characterised factors which affect BMSCs characteristics, such as fibronectin (FN) coating, and morphogens such as FGF2 and BMP4, were incorporated into the cell culture conditions. The experimental set up was designed to provide insight into the expression pattern of the stem cell related transcription factors Sox2, cMyc and Oct4, in BMSCs with respect to passaging and changes in culture conditions. Induction of these pluripotency markers in somatic cells by retroviral transfection has been shown to confer pluripotency and an ESCs like state. Our study demonstrated that all treatments could transiently induce the expression of Sox2, cMyc and Oct4, and favourably affect the proliferation potential of BMSCs. The combined effect of these treatments was able to induce and retain the endogenous nuclear expression of stem cell transcription factors in BMSCs over an extended number of in vitro passages. Our results therefore suggest that the transient induction and manipulation of endogenous expression of transcription factors critical for stemness can be achieved by modulating the culture conditions; the benefit of which is to circumvent the need for genetic manipulations. In summary, this study has explored the role of BMSCs in the diseased state of osteoarthritis, by employing transcriptional profiling along with SI. In particular this study pioneered the use of primary cells for generating novel antibodies by SI. We established that somatic cells and BMSCs have a basal level of expression of pluripotency markers. Furthermore, our study indicates that intrinsic signalling mechanisms of BMSCs are intimately linked with extrinsic cues from the microenvironment and that these signals appear to be critical for retaining the expression of genes to maintain cell stemness in long term in vitro culture. This project provides a basis for developing an “artificial niche” required for reversion of commitment and maintenance of BMSC in their uncommitted homeostatic state.
Resumo:
The paper "the importance of convexity in learning with squared loss" gave a lower bound on the sample complexity of learning with quadratic loss using a nonconvex function class. The proof contains an error. We show that the lower bound is true under a stronger condition that holds for many cases of interest.
Resumo:
We consider the problem of binary classification where the classifier can, for a particular cost, choose not to classify an observation. Just as in the conventional classification problem, minimization of the sample average of the cost is a difficult optimization problem. As an alternative, we propose the optimization of a certain convex loss function φ, analogous to the hinge loss used in support vector machines (SVMs). Its convexity ensures that the sample average of this surrogate loss can be efficiently minimized. We study its statistical properties. We show that minimizing the expected surrogate loss—the φ-risk—also minimizes the risk. We also study the rate at which the φ-risk approaches its minimum value. We show that fast rates are possible when the conditional probability P(Y=1|X) is unlikely to be close to certain critical values.
Resumo:
We present here a numerical study of laminar doubly diffusive free convection flows adjacent to a vertical surface in a stable thermally stratified medium. The governing equations of mass, momentum, energy and species are non-dimensionalized. These equations have been solved by using an implicit finite difference method and local non-similarity method. The results show many interesting aspects of complex interaction of the two buoyant mechanisms that have been shown in both the tabular as well as graphical form.
Resumo:
Older adults, especially those acutely ill, are vulnerable to developing malnutrition due to a range of risk factors. The high prevalence and extensive consequences of malnutrition in hospitalised older adults have been reported extensively. However, there are few well-designed longitudinal studies that report the independent relationship between malnutrition and clinical outcomes after adjustment for a wide range of covariates. Acutely ill older adults are exceptionally prone to nutritional decline during hospitalisation, but few reports have studied this change and impact on clinical outcomes. In the rapidly ageing Singapore population, all this evidence is lacking, and the characteristics associated with the risk of malnutrition are also not well-documented. Despite the evidence on malnutrition prevalence, it is often under-recognised and under-treated. It is therefore crucial that validated nutrition screening and assessment tools are used for early identification of malnutrition. Although many nutrition screening and assessment tools are available, there is no universally accepted method for defining malnutrition risk and nutritional status. Most existing tools have been validated amongst Caucasians using various approaches, but they are rarely reported in the Asian elderly and none has been validated in Singapore. Due to the multiethnicity, cultural, and language differences in Singapore older adults, the results from non-Asian validation studies may not be applicable. Therefore it is important to identify validated population and setting specific nutrition screening and assessment methods to accurately detect and diagnose malnutrition in Singapore. The aims of this study are therefore to: i) characterise hospitalised elderly in a Singapore acute hospital; ii) describe the extent and impact of admission malnutrition; iii) identify and evaluate suitable methods for nutritional screening and assessment; and iv) examine changes in nutritional status during admission and their impact on clinical outcomes. A total of 281 participants, with a mean (+SD) age of 81.3 (+7.6) years, were recruited from three geriatric wards in Tan Tock Seng Hospital over a period of eight months. They were predominantly Chinese (83%) and community-dwellers (97%). They were screened within 72 hours of admission by a single dietetic technician using four nutrition screening tools [Tan Tock Seng Hospital Nutrition Screening Tool (TTSH NST), Nutritional Risk Screening 2002 (NRS 2002), Mini Nutritional Assessment-Short Form (MNA-SF), and Short Nutritional Assessment Questionnaire (SNAQ©)] that were administered in no particular order. The total scores were not computed during the screening process so that the dietetic technician was blinded to the results of all the tools. Nutritional status was assessed by a single dietitian, who was blinded to the screening results, using four malnutrition assessment methods [Subjective Global Assessment (SGA), Mini Nutritional Assessment (MNA), body mass index (BMI), and corrected arm muscle area (CAMA)]. The SGA rating was completed prior to computation of the total MNA score to minimise bias. Participants were reassessed for weight, arm anthropometry (mid-arm circumference, triceps skinfold thickness), and SGA rating at discharge from the ward. The nutritional assessment tools and indices were validated against clinical outcomes (length of stay (LOS) >11days, discharge to higher level care, 3-month readmission, 6-month mortality, and 6-month Modified Barthel Index) using multivariate logistic regression. The covariates included age, gender, race, dementia (defined using DSM IV criteria), depression (defined using a single question “Do you often feel sad or depressed?”), severity of illness (defined using a modified version of the Severity of Illness Index), comorbidities (defined using Charlson Comorbidity Index, number of prescribed drugs and admission functional status (measured using Modified Barthel Index; MBI). The nutrition screening tools were validated against the SGA, which was found to be the most appropriate nutritional assessment tool from this study (refer section 5.6) Prevalence of malnutrition on admission was 35% (defined by SGA), and it was significantly associated with characteristics such as swallowing impairment (malnourished vs well-nourished: 20% vs 5%), poor appetite (77% vs 24%), dementia (44% vs 28%), depression (34% vs 22%), and poor functional status (MBI 48.3+29.8 vs 65.1+25.4). The SGA had the highest completion rate (100%) and was predictive of the highest number of clinical outcomes: LOS >11days (OR 2.11, 95% CI [1.17- 3.83]), 3-month readmission (OR 1.90, 95% CI [1.05-3.42]) and 6-month mortality (OR 3.04, 95% CI [1.28-7.18]), independent of a comprehensive range of covariates including functional status, disease severity and cognitive function. SGA is therefore the most appropriate nutritional assessment tool for defining malnutrition. The TTSH NST was identified as the most suitable nutritional screening tool with the best diagnostic performance against the SGA (AUC 0.865, sensitivity 84%, specificity 79%). Overall, 44% of participants experienced weight loss during hospitalisation, and 27% had weight loss >1% per week over median LOS 9 days (range 2-50). Wellnourished (45%) and malnourished (43%) participants were equally prone to experiencing decline in nutritional status (defined by weight loss >1% per week). Those with reduced nutritional status were more likely to be discharged to higher level care (adjusted OR 2.46, 95% CI [1.27-4.70]). This study is the first to characterise malnourished hospitalised older adults in Singapore. It is also one of the very few studies to (a) evaluate the association of admission malnutrition with clinical outcomes in a multivariate model; (b) determine the change in their nutritional status during admission; and (c) evaluate the validity of nutritional screening and assessment tools amongst hospitalised older adults in an Asian population. Results clearly highlight that admission malnutrition and deterioration in nutritional status are prevalent and are associated with adverse clinical outcomes in hospitalised older adults. With older adults being vulnerable to risks and consequences of malnutrition, it is important that they are systematically screened so timely and appropriate intervention can be provided. The findings highlighted in this thesis provide an evidence base for, and confirm the validity of the current nutrition screening and assessment tools used among hospitalised older adults in Singapore. As the older adults may have developed malnutrition prior to hospital admission, or experienced clinically significant weight loss of >1% per week of hospitalisation, screening of the elderly should be initiated in the community and continuous nutritional monitoring should extend beyond hospitalisation.
Resumo:
Objective: This paper asks whether Indigenous health policies might be improved if governments listened to Indigenous voices, both Australian and those who drafted the Declaration on the Rights of Indigenous Peoples, 2007. Methods: A fundamental tenet of the Declaration, which Australia endorsed in 2009, is respect for Indigenous knowledge and voice. The author analyses legal, cultural and historical sources for evidence of this respect. The metaphorical and empirical framework of the analysis is the epidemic of otitis media among Indigenous children. Results: A survey of Indigenous advice about health clearly demonstrates that access to their land and respect for the diversity of Indigenous cultures should inform health policies. Despite, however, claiming to consult Indigenous peoples, policy-makers have not been listening. In many Indigenous languages not listening, or ‘bad ears’, has connotations of disrespect. Conclusions: By turning a deaf ear to Indigenous knowledge governments are undermining any respect Indigenous peoples may have for them and their policies. A new approach is needed. Implications: The Declaration on the Rights of Indigenous Peoples can provide federal, state and territory governments with benchmarks against which health policy can be developed and implemented. Authentic consultation could restore Indigenous confidence in government policies.
Resumo:
We report that 10% of melanoma tumors and cell lines harbor mutations in the fibroblast growth factor receptor 2 (FGFR2) gene. These novel mutations include three truncating mutations and 20 missense mutations occurring at evolutionary conserved residues in FGFR2 as well as among all four FGFRs. The mutation spectrum is characteristic of those induced by UV radiation. Mapping of these mutations onto the known crystal structures of FGFR2 followed by in vitro and in vivo studies show that these mutations result in receptor loss of function through several distinct mechanisms, including loss of ligand binding affinity, impaired receptor dimerization, destabilization of the extracellular domains, and reduced kinase activity. To our knowledge, this is the first demonstration of loss-of-function mutations in a class IV receptor tyrosine kinase in cancer. Taken into account with our recent discovery of activating FGFR2 mutations in endometrial cancer, we suggest that FGFR2 may join the list of genes that play context-dependent opposing roles in cancer.
Resumo:
Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.
Resumo:
We report the production of free-standing thin sheets made up of mass-produced ZnO nanowires and the application of these nanowire sheets for the fabrication of ZnO/organic hybrid light-emitting diodes in the manner of assembly. Different p-type organic semiconductors are used to form heterojunctions with the ZnO nanowire film. Electroluminescence measurements of the devices show UV and visible emissions. Identical strong red emission is observed independent of the organic semiconductor materials used in this work. The visible emissions corresponding to the electron transition between defect levels within the energy bandgap of ZnO are discussed.
Resumo:
We have grown defect-rich ZnO nanowires on a large scale by the vapour phase reaction method without using any metal catalyst and vacuum system. The defects, including zinc vacancies, oxygen interstitials and oxygen antisites, are related to the excess of oxygen in ZnO nanowires and are controllable. The nanowires having high excess of oxygen exhibit a brown-colour photoluminescence, due to the dominant emission band composed by violet, blue and green emissions. Those having more balanced Zn and O show a dominant green emission, giving rise to a green colour under UV light illumination. By O2-annealing treatment the violet luminescence after the band-edge emission UV peak can be enhanced for as-grown nanowires. However, the green emission shows different changing trends under O2-annealing treatment, associated with the excess of oxygen in the nanowires.