996 resultados para Stabilization techniques
Resumo:
This paper proposes a design methodology to stabilize relative equilibria in a model of identical, steered particles moving in the plane at unit speed. Relative equilibria either correspond to parallel motion of all particles with fixed relative spacing or to circular motion of all particles around the same circle. Particles exchange relative information according to a communication graph that can be undirected or directed and time-invariant or time-varying. The emphasis of this paper is to show how previous results assuming all-to-all communication can be extended to a general communication framework. © 2008 IEEE.
Resumo:
We provide a cooperative control algorithm to stabilize symmetric formations to motion around closed curves suitable for mobile sensor networks. This work extends previous results for stabilization of symmetric circular formations. We study a planar particle model with decentralized steering control subject to limited communication. Because of their unique spectral properties, the Laplacian matrices of circulant graphs play a key role. We illustrate the result for a skewed superellipse, which is a type of curve that includes circles, ellipses, and rounded parallelograms. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies. © 2007 IEEE.
Resumo:
This paper proposes a design methodology to stabilize isolated relative equilibria in a model of all-to-all coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a low-order parametric family of stabilizable collectives that offer a set of primitives for the design of higher-level tasks at the group level. © 2007 IEEE.
Resumo:
The paper studies the properties of a sinusoidally vibrating wedge billiard as a model for 2-D bounce juggling. It is shown that some periodic orbits that are unstable in the elastic fixed wedge become exponentially stable in the nonelastic vibrating wedge. These orbits are linked with certain classical juggling patterns, providing an interesting benchmark for the study of the frequency-locking properties in human rhythmic tasks. Experimental results on sensorless stabilization of juggling patterns are described. © 2006 IEEE.
Resumo:
The paper addresses the rhythmic stabilization of periodic orbits in a wedge billiard with actuated edges. The output feedback strategy, based on the sole measurement of impact times, results from the combination of a stabilizing state feedback control law and a nonlinear deadbeat state estimator. It is shown that the robustness of both the control law and the observer leads to a simple rhythmic controller achieving a large basin of attraction. Copyright © 2005 IFAC.
Resumo:
This paper presents a Lyapunov design for the stabilization of collective motion in a planar kinematic model of N particles moving at constant speed. We derive a control law that achieves asymptotic stability of the splay state formation, characterized by uniform rotation of N evenly spaced particles on a circle. In designing the control law, the particle headings are treated as a system of coupled phase oscillators. The coupling function which exponentially stabilizes the splay state of particle phases is combined with a decentralized beacon control law that stabilizes circular motion of the particles. © 2005 IEEE.
Resumo:
This paper introduces a stabilization problem for an elementary impact control system in the plane. The rich dynamical properties of the wedge billiard, combined to the relevance of the associated stabilization problem for feedback control issues in legged robotics make it a valuable benchmark for energy-based stabilization of impact control systems.
Resumo:
In this paper, we survey some recent results on stabilization and disturbance attenuation for nonlinear systems using a dissipativity approach. After reviewing the basic dissipativity concept, we stress the connections between Lyapunov designs and the problem of achieving passivity by feedback. Focusing on physical models, we then illustrate how the design of stabilizing feedback can take advantage of the natural energy balance equation of the system. Here stabilization is viewed as the task of shaping the energy of the system to enforce a minimum at the desired equilibrium. Finally, we show the implications of dissipativity theory as an appropriate framework to study the nonlinear H∞ control problem. © 2002 EUCA.
Resumo:
The effect of bounded input perturbations on the stability of nonlinear globally asymptotically stable delay differential equations is analyzed. We investigate under which conditions global stability is preserved and if not, whether semi-global stabilization is possible by controlling the size or shape of the perturbation. These results are used to study the stabilization of partially linear cascade systems with partial state feedback.
Resumo:
This note analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a Stable nonlinear system. It is shown that the instability of the zeros of the linear System can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static-state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.
Resumo:
This paper analyzes the stabilizability properties of nonlinear cascades in which a nonminimum phase linear system is interconnected through its output to a stable nonlinear system. It is shown that the instability of the zeros of the linear system can be traded with the stability of the nonlinear system up to a limit fixed by the growth properties of the cascade interconnection term. Below this limit, global stabilization is achieved by smooth static state feedback. Beyond this limit, various examples illustrate that controllability of the cascade may be lost, making it impossible to achieve large regions of attractions.
Resumo:
Plugging is well known to be a major cause of instability in industrial cement mills. A simple nonlinear model able to simulate the plugging phenomenon is presented. It is shown how a nonlinear robust controller can be designed in order to fully prevent the mill from plugging.
Resumo:
This paper presents an analysis of the slow-peaking phenomenon, a pitfall of low-gain designs that imposes basic limitations to large regions of attraction in nonlinear control systems. The phenomenon is best understood on a chain of integrators perturbed by a vector field up(x, u) that satisfies p(x, 0) = 0. Because small controls (or low-gain designs) are sufficient to stabilize the unperturbed chain of integrators, it may seem that smaller controls, which attenuate the perturbation up(x, u) in a large compact set, can be employed to achieve larger regions of attraction. This intuition is false, however, and peaking may cause a loss of global controllability unless severe growth restrictions are imposed on p(x, u). These growth restrictions are expressed as a higher order condition with respect to a particular weighted dilation related to the peaking exponents of the nominal system. When this higher order condition is satisfied, an explicit control law is derived that achieves global asymptotic stability of x = 0. This stabilization result is extended to more general cascade nonlinear systems in which the perturbation p(x, v) v, v = (ξ, u) T, contains the state ξ and the control u of a stabilizable subsystem ξ = a(ξ, u). As an illustration, a control law is derived that achieves global stabilization of the frictionless ball-and-beam model.
Resumo:
The global stabilization of a class of feedforward systems having an exponentially unstable Jacobian linearization is achieved by a high-gain feedback saturated at a low level. The control law forces the derivatives of the state variables to small values along the closed-loop trajectories. This "slow control" design is illustrated with a benchmark example and its limitations are emphasized. © 1999 Elsevier Science B.V. All rights reserved.