949 resultados para Spontaneously broken symmetry
Resumo:
This study determined whether the radial growth of lobes of the foliose lichen Parmelia conspersa (Ehrh. ex Ach.)Ach. was influenced by the radial growth and morphology of their closest neighbours and whether such interactions influence thallus symmetry. The radial growth and morphology of a sample of adjacent lobes from six thalli was measured. Positive correlations were observed between radial growth and lobe width in three thalli and with the degree of bifurcation of the lobe in two thalli. Negative correlations between the radial growth of adjacent lobes were observed in four thalli suggesting that faster growing lobes may inhibit the growth of their neighbours.Lobes glued next to individual lobes had no signifiacnt effect on the radial growth of wide or narrow lobes. Lobes glued 1-2 mm in front of their neighbours exhibited an intital phase of increased radial growth and then a phase of slower growth. Radial growth decreased when the lobes were glued 2 mm behind their neighbours and these lobes were essentially eliminated by the growth of the adjacent lobes. The data suggest that lobe interactions may incresae lobe growth variation within a thallus. However, the decrease in radial growth of lobes which protrude from the margin and the elimination of slower growing lobes may help to maintain thallus symmetry.
Resumo:
The aim of this study was to determine how thallus symmetry could be maintained in foliose lichens when variation in the growth of individual lobes may be high. Hence, the radial growth of a sample of lobes was studied monthly, over 22 months, in 7 thalli of Parmelia conspersa (Ehrh. Ex Ach.) Ach. And 5 thalli of P. glabratula ssp fuliginosa (fr. ex Duby) Laund. The degree of variation in the total radial growth of different lobes within a thallus over 22 months varied between thalli. Individual lobes showed a fluctuating pattern of radial growth from month to month with alternating periods of fast and slow growth. Monthly variations in radial growth of different lobes were synchronized in some but not in all thalli. Few significant correlations were found between the radial growth of individual lobes and total monthly rainfall or shortwave radiation. The levels of ribitol, arabitol and mannitol were measured in individual lobes. All three polyols varied significantly between lobes within a thallus suggesting that variations in algal phostosynthesis and in the partitioning of fungal polyols may contribute to lobe growth variation. The effect on thallus symmetry of lobes which grew radially either consistently faster or slower than average was studied. Slow growing lobes were overgrown, and gaps in the perimeter were eliminated by the growth of neighbouring lobes, in approximately 7 to 9 months. However, a rapidly growing lobe, with its neighbours removed on either side, continued to grow radially at the same rate as rapidly growing control lobes. The results suggested that lobe growth variation results from a combination of factors which may include the origin of the lobes, lobe morphology and the patterns of algal cell division and hyphal elongation in different lobes. No convincing evidence was found to suggest that exchange of carbohydrate occurred between lobes which would tend to equalize their radial growth. Hence, the fluctuating pattern of lobe growth observed may be sufficient to maintain a degree of symmetry in most thalli. In addition, slow growing lobes would tend to be overgrown by faster growing neighbours thus preventing the formation of indentations in the thallus perimeter.
Resumo:
Methods for understanding classical disordered spin systems with interactions conforming to some idealized graphical structure are well developed. The equilibrium properties of the Sherrington-Kirkpatrick model, which has a densely connected structure, have become well understood. Many features generalize to sparse Erdös- Rényi graph structures above the percolation threshold and to Bethe lattices when appropriate boundary conditions apply. In this paper, we consider spin states subject to a combination of sparse strong interactions with weak dense interactions, which we term a composite model. The equilibrium properties are examined through the replica method, with exact analysis of the high-temperature paramagnetic, spin-glass, and ferromagnetic phases by perturbative schemes. We present results of replica symmetric variational approximations, where perturbative approaches fail at lower temperature. Results demonstrate re-entrant behaviors from spin glass to ferromagnetic phases as temperature is lowered, including transitions from replica symmetry broken to replica symmetric phases. The nature of high-temperature transitions is found to be sensitive to the connectivity profile in the sparse subgraph, with regular connectivity a discontinuous transition from the paramagnetic to ferromagnetic phases is apparent.
Resumo:
A numerical continuation method is carried out in a homotopy space connecting two different flows, the Plane Couette Flow (PCF) and the Laterally Heated Flow in a vertical slot (LHF). This numerical continuation method enables us to obtain an exact steady solution in PCF. The new solution has the shape of hairpin vortices (HVS: hairpin vortex solution), which is observed ubiquitously in turbulent shear flows.
Resumo:
We consider turbulence within the Gross-Pitaevsky model and look into the creation of a coherent condensate via an inverse cascade originating at small scales. The growth of the condensate leads to a spontaneous breakdown of statistical symmetries of overcondensate fluctuations: First, isotropy is broken, then a series of phase transitions marks the changing symmetry from twofold to threefold to fourfold. We describe respective anisotropic flux flows in the k space. At the highest level reached, we observe a short-range positional and long-range orientational order (as in a hexatic phase). In other words, the more one pumps the system, the more ordered the system becomes. The phase transitions happen when the system is pumped by an instability term and does not occur when pumped by a random force. We thus demonstrate nonuniversality of an inverse-cascade turbulence with respect to the nature of small-scale forcing.
Resumo:
To help understand how sugar interactions with proteins stabilise biomolecular structures, we compare the three main hypotheses for the phenomenon with the results of long molecular dynamics simulations on lysozyme in aqueous trehalose solution (0.75 M). We show that the water replacement and water entrapment hypotheses need not be mutually exclusive, because the trehalose molecules assemble in distinctive clusters on the surface of the protein. The flexibility of the protein backbone is reduced under the sugar patches supporting earlier findings that link reduced flexibility of the protein with its higher stability. The results explain the apparent contradiction between different experimental and theoretical results for trehalose effects on proteins.
Resumo:
Recently introduced Surface Nanoscale Axial Photonics (SNAP) is based on whispering gallery modes circulating around the optical FIber surface and undergoing slow axial propagation. In this paper we develop the theory of propagation of whispering gallery modes in a SNAP microresonator, which is formed by nanoscale asymmetric perturbation of the FIber translation symmetry and called here a nanobump microresonator. The considered modes are localized near a closed stable geodesic situated at the FIber surface. A simple condition for the stability of this geodesic corresponding to the appearance of a high Q-factor nanobump microresonator is found. The results obtained are important for engineering of SNAP devices and structures.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.
Resumo:
This article presents the principal results of the doctoral thesis “Isomerism as internal symmetry of molecules” by Valentin Vankov Iliev (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 15 December, 2008.
Resumo:
While the literature has suggested the possibility of breach being composed of multiple facets, no previous study has investigated this possibility empirically. This study examined the factor structure of typical component forms in order to develop a multiple component form measure of breach. Two studies were conducted. In study 1 (N = 420) multi-item measures based on causal indicators representing promissory obligations were developed for the five potential component forms (delay, magnitude, type/form, inequity and reciprocal imbalance). Exploratory factor analysis showed that the five components loaded onto one higher order factor, namely psychological contract breach suggesting that breach is composed of different aspects rather than types of breach. Confirmatory factor analysis provided further evidence for the proposed model. In addition, the model achieved high construct reliability and showed good construct, convergent, discriminant and predictive validity. Study 2 data (N = 189), used to validate study 1 results, compared the multiple-component measure with an established multiple item measure of breach (rather than a single item as in study 1) and also tested for discriminant validity with an established multiple item measure of violation. Findings replicated those in study 1. The findings have important implications for considering alternative, more comprehensive and elaborate ways of assessing breach.
Resumo:
In the given work by authors new approach to the exposure of degree of influencing of medications of vegetable origin in a time of renewal of broken equilibrium of man organism is offered. During realization of the given approach it is suggested to use the mathematical vehicle of.