948 resultados para Spondias mombin. Phenolic acid. Antiinflammatory. Antioxidant.Antimicrobial and antiproliferative


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Focal biliary cirrhosis causes significant morbidity and mortality in cystic fibrosis (CF). Although the mechanisms of pathogenesis remain unclear, bile acids have been proposed as potential mediators of liver injury. This study examined bile acid composition in CF and assessed altered bile acid profiles to determine if they are associated with incidence and progression of liver injury in CF-associated liver disease (CFLD). Bile acid composition was determined by gas-liquid chromatography/mass spectrometry in bile, urine, and serum samples from 30 children with CFLD, 15 children with CF but without liver disease (CFnoLD)), and 43 controls. Liver biopsies from 29 CFLD subjects were assessed histologically by grading for fibrosis stage, inflammation, and disruption of the limiting plate. A significantly greater proportion of endogenous biliary ursodeoxycholic acid (UDCA) was demonstrated in CFnoLD subjects vs. both CFLD subjects and controls (2.4- and 2.2-fold, respectively; ANOVA, P = .04), and a 3-4 fold elevation in endogenous serum UDCA concentration was observed in both CFLD subjects and CFnoLD subjects vs. controls (ANOVA, P < .05). In CFLD, there were significant correlations between serum cholic acid and hepatic fibrosis, inflammation, and limiting plate disruption as well as the ratio of serum cholic acid/chenodeoxycholic acid to hepatic fibrosis, inflammation, and limiting plate disruption. In conclusion, elevated endogenous UDCA in CFnoLD suggests a possible protective role against liver injury in these patients. The correlation between both cholic acid and cholic acid/chenodeoxycholic acid levels with histological liver injury and fibrosis progression suggests a potential monitoring role for these bile acids in CFLD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of a 4-year project to study phenolic compounds in tea shoots over the growing seasons and during black tea processing in Australia, an HPLC method was developed and optimised for the identification and quantification of phenolic compounds, mainly flavanols and phenolic acids, in fresh tea shoots. Methanol proved to be the most suitable solvent for extracting the phenolic compounds, compared with chloroform, ethyl acetate and water. Immediate analysis, by HPLC, of the methanol extract showed higher separation efficiency than analyses after being dried and redissolved. This method exhibited good repeatability (CV 3-9%) and recovery rate (88-116%). Epigallocatechin gallate alone constituted up to 115 mg/g, on a dry basis, in the single sample of Australian fresh tea shoots examined. Four catechins (catechin, gallocatechin, epicatechin and epigallocatechin) and six catechin gallates (epigallocatechin gallate, catechin gallate, epicatechin gallate, gallocatechin gallate, epicatechin digallate and epigallocatechin digallate) have been identified and quantified by this HPLC method. In addition, two major tea alkaloids, caffeine and theobromine, have been quantified, while five flavonol glycosides and six phenolic acids, including quinic acids and esters, were identified and quantified. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive animal industries create large volumes of nutrient rich effluent, which, if untreated, has the potential for substantial environmental degradation. Aquatic plants in aerobic lagoon systems have the potential to achieve inexpensive and efficient remediation of effluent, and to recover valuable nutrients that would otherwise be lost. Members of the family Lemnaceae (duckweeds) are widely used in lagoon systems, but despite their widespread use in the cleansing of sewage, only limited research has been conducted into their growth in highly eutrophic media, and little has been done to systematically distinguish between different types of media. This study examined the growth characteristics of duckweed in abattoir effluent, and explored possible ways of ameliorating the inhibitory factors to growth on this medium. A series of pot trials was conducted to test the tolerance of duckweed to abattoir effluent partially remediated by a sojourn in anaerobic fermentation ponds, both in its unmodified form, and after the addition of acid to manipulate pH, and the addition of bentonite. Unmodified abattoir effluent was highly toxic to duckweed, although duckweed remained viable and grew sub optimally in media with total ammonia nitrogen (TAN) concentrations of up to 100 mg/l. Duckweed also grew vigorously in effluent diluted 1:4 v/v, containing 56 mg TAN/L and also modified by addition of acid to decrease pH to 7 and by adding bentonite (0.5%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organ transplant recipients develop pronounced cardiovascular disease, and decreased antioxidant capacity in plasma and erythrocytes is associated with the pathogenesis of this disease. These experiments tested the hypothesis that the immunosuppressant cyclosporine A (CsA) alters erythrocyte redox balance and reduces plasma antioxidant capacity. Female Sprague-Dawley rats were randomly assigned to a control or CsA treated group. Treatment animals received 25 mg/kg/day of CsA via intraperitoneal injection for 18 days. Control rats were injected with the same volume of the vehicle. Three hours after the final CsA injection, rats were exsanguinated and plasma analysed for total antioxidant status (TAS), alpha-tocopherol, malondialdehyde (MDA), and creatinine. Erythrocytes were analysed for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glucose-6-phosphate dehydrogenase (G6PD) activities, alpha-tocopherol, and MDA. CsA administration resulted in a significant (P < 0.05) decrease in plasma TAS and significant increases (P < 0.05) in plasma creatinine and MDA. Erythrocyte CAT was significantly (P < 0.05) increased in CsA treated rats compared to controls. There were no significant differences (P > 0.05) in erythrocyte SOD, GPX, G6PD, alpha-tocopherol or MDA between groups. In summary, CsA alters erythrocyte antioxidant defence and decreases plasma total antioxidant capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prevalence of low temperature at sowing results in poor rice seed germination, seedling establishment and vigour in several temperate rice growing countries around the world. Rice seed of four cultivars (Sasanishiki, H433, HSC-55 and Doongara) was soaked in various combinations of gibberellic acid(3) (GA(3)) and glycinebetaine (GB) in petri dishes placed in a low temperature glasshouse (18/13 degrees C; day/night) for 2 days. After the 2 days soak, 10 treated seed were transferred into plastic pots filled with soil and seedlings were grown in the same glasshouse, where seed was treated. Seedling emergence was least affected by low temperature in cold tolerant cultivar, HSC-55, while other three cultivars showed reduced seedling emergence. However, seedling emergence increased significantly in some cultivars in response to seed treatment with GA(3) and/or GB. Seedlings emerged faster even in the cold tolerant cultivar, HSC-55, as measured by reduced mean emergence time (MET), in response to GB. Seedling height and seedling dry matter also increased in response to both GA(3) and GB. Combined treatment of both GA(3) and GB was more beneficial in increasing seedling emergence and vigour than the treatment with only GA3 or GB. We demonstrated significant genotypic differences for seedling emergence and vigour and not all cultivars responded to the treatment with GA(3) and GB, under low temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purple acid phosphatases are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. Only one isoform of similar to 35 kDa has been isolated from animals, where it is associated with bone resorption and microbial killing through its phosphatase activity, and hydroxyl radical production, respectively. Using the sensitive PSI-BLAST search method, sequences representing new purple acid phosphatase-like proteins have been identified in mammals, insects and nematodes. These new putative isoforms are closely related to the similar to 55 kDa purple acid phosphatase characterized from plants. Secondary structure prediction of the new human isoform further confirms its similarity to a purple acid phosphatase from the red kidney bean. A structural model for the human enzyme was constructed based on the red kidney bean purple acid phosphatase structure. This model shows that the catalytic centre observed in other purple acid phosphatases is also present in this new isoform. These observations suggest that the sequences identified in this study represent a novel subfamily of plant-like purple acid phosphatases in animals and humans. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays. (C) 2005 Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Staphylococcus epidermidis causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative Staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from S. epidermidis and LPS from Escherichia coli O111. The ability of these components to stimulate the production of proinflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the S. epidermidis products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from E. coli. By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from S. epidermidis biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies. © 2005 SGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four novel oxapenem compounds (i.e., AM-112, AM-113, AM-114, and AM-115) were investigated for their β-lactamase inhibitory activity against a panel of isolated class A, C, and D enzymes, which included expanded-spectrum β-lactamase enzymes (ESBLs). The oxapenems were potent β-lactamase inhibitors. Activity varied within the group, with AM-113 and AM-114 proving to be the most active compounds. The 50% inhibitory concentrations for these agents were up to 100,000-fold lower than that of clavulanic acid against class C and D enzymes. As a group, the oxapenems were more potent than clavulanic acid against enzymes from all classes. The ability of these compounds to protect ceftazidime from hydrolysis by β-lactamase-producing strains was evaluated by MIC tests that combined ceftazidime and each oxapenem in a 1:1 or 2:1 ratio. The oxapenems markedly reduced the MICs for ceftazidime against class C hyperproducing strains and strains producing TEM- and SHV-derived ESBLs. There was little difference between the activity of 1:1 and 2:1 combinations of ceftazidime and oxapenem. The oxapenems failed to enhance the activity of ceftazidime against derepressed AmpC-producing Pseudomonas aeruginosa strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AM-112[1′R,5R,6R)-3-(4-amino-1,1-dimethyl-butyl)-6-(1′- hydroxyethyl)oxapenem-3-carboxylatel is a novel oxapenem compound which possesses potent β-lactamase-inhibitory properties. Fifty-percent inhibitory concentrations (IC50s) of AM-112 for class A enzymes were between 0.16 and 2.24 μM for three enzymes, compared to IC50s of 0.008 to 0.12 μM for clavulanic acid. Against class C and class D enzymes, however, the activity of AM-112 was between 1,000- and 100,000-fold greater than that of clavulanic acid. AM-112 had affinity for the penicillin-binding proteins (PBPs) of Escherichia coli DC0, with PBP2 being inhibited by the lowest concentration of AM-112 tested, 0.1 μg/ml. Ceftazidime was combined with AM-112 at 1:1 and 2:1 ratios in MIC determination studies against a panel of β-lactamase-producing organisms. These studies demonstrated that AM-112 was effective at protecting ceftazidime against extended-spectrum β-lactamase-producing strains and derepressed class C enzyme producers, reducing ceftazidime MICs by 16- and 2,048-fold. Similar results were obtained when AM-112 was combined with ceftriaxone, cefoperazone, or cefepime in a 1:2 ratio. Protection of ceftazidime with AM-112 was maintained against Enterobacter cloacae P99 and Klebsiella pneumoniae SHV-5 in a murine intraperitoneal sepsis model. The 50% effective dose of ceftazidime against E. cloacae P99 and K. pneumoniae SHV-5 was reduced from >100 and 160 mg/kg of body weight to 2 and 33.6 mg/kg, respectively, when it was combined with AM-112 at a 1:1 ratio. AM-112 demonstrates potential as a new β-lactamase inhibitor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymers are subject to oxidation throughout their lifecycle. Antioxidants are generally incorporated in polymers to inhibit or minimise oxidative degradation. Hindered phenolic antioxidants are important stabilisers for polyolefins. However, hindered phenols undergo chemical transformations while performing their antioxidant function during processing and fabrication. In addition, antioxidants are subject to loss from polymers during processing, or subsequently in-service. Migration of antioxidants is a major concern in applications involving polymers in direct contact with food and human environment. This concern is compounded by the realisation that very little is known about the nature and the migration behaviour of antioxidant transformation products. In this work, the antioxidant role of the biological antioxidant -tocopherol (Vitamin E) , which is structurally similar to many synthetic hindered phenols, is investigated in low density polyethylene (LDPE) and polypropylene (PP). The melt stabilising effectiveness of -tocopherol (Toc) was found to be very high, higher than that of commercial hindered phenol antioxidants, such as Irganox 1076 (Irg 1076) and Irganox 1010 (Irg 1010), after multiple extrusions, especially at very low concentrations. The high antioxidant activity of Toc was shown to be due, at least in part, to the formation of transformation products during processing. The main products formed are stereoisomers of dimers and trimers, as well as aldehydes and a quinone - the relative concentration of each was shown to depend on the processing severity, the initial antioxidant concentration and oxygen availability. These transformation products are shown to impart better, similar or lower melt stability to the polymer than the parent antioxidant. The nature of the products formed from Toc during processing was compared with those formed during processing of Irg 1076 and Irg 1010 with LDPE and a mechanism for the melt stabilisation of Toc was proposed and compared with the stabilisation mechanisms of the synthetic antioxidants Irg 1076 and Irg 1010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has seen an influx of speciality plant seed oils arriving into the market place. The need to characterise these oils has become an important aspect of the oil industry. The characterisation of the oils allows for the physical and chemical properties of the oil to be determined. Speciality oils were characterised based on their lipid and fatty acid profiles and categorised as monounsaturated rich (oleic acid as the major acyl components e.g. Moringa and Marula oil), linoleic acid rich (Grape seed and Evening Primrose oil) or linolenic acid rich (Flaxseed and Kiwi oil). The quality of the oils was evaluated by determining the free fatty acid content, the peroxide value (that measures initial oxidation) and p-anisidine values (that determines secondary oxidation products containing the carbonyl function). A reference database was constructed for the oils in order to compare batches of oils for their overall quality including oxidative stability. For some of the speciality oils, the stereochemistry of the triacylglycerols was determined. Calophyllum, Coffee, Poppy and Sea Buckthorn oils stereochemistry was determined. The oils were enriched with saturated and/or a monounsaturated fatty acids at position sn-1 and sn-3. The sn-2 position of the four oils was esterified with a polyunsaturated and/or a monounsaturated fatty acid indicating that they follow a typical acylation pathway and no novel acylation activity was evident from these studies (e.g enrichment of saturates at the sn-2 position). The oxidative stability of the oils was evaluated at 18oC and 60oC and the effect of adding a-tocopherol at commercially used level i.e 750ppm was assessed. The addition of 750ppm of a-tocopherol at 18oC increased the oxidative stability of Brown flax, Moringa, Wheat germ and Yangu oils. At 60oC Brown Flax, Manketti and Pomegranate oil polymerised after 48 hours. The addition of 750ppm a-tocopherol delayed the onset of polymerisation by up to 48 hours in Brown Flax seed oil. Pomegranate oil showed a high resistance to oxidation, and was blended into other speciality oils at 1%. Pomegranate oil increased the oxidative stability of Yangu oil at 18oC. The addition of Pomegranate oil to Wheat germ oil at 60oC, decreased the peroxide content by 10%. In Manketti and Brown Flaxseed oil at elevated temperatures, Pomegranate oil delayed the onset of polymerisation. Preliminary studies of Pomegranate oil blending to Moringa and Borage oil showed it to be more effective than a-tocopherol for certain oils. The antioxidant effects observed following the addition of Pomegranate oil may be due to its conjugated linolenic acid fatty acid, punicic acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxidase (NOX) enzyme and antioxidant enzyme systems in murine adenocarcinoma tumour-bearing cachectic mice. Methods - Superoxide levels, mRNA levels of NOX enzyme subunits and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidise (GPx) and catalase was measured in the skeletal muscle of mice with cancer and cancer cachexia. Protein expression levels of NOX enzyme subunits and antioxidant enzyme activity was also measured in the same muscle samples. Results - Superoxide levels increased 1.4-fold in the muscle of mice with cancer cachexia, and this was associated with a decrease in mRNA of NOX enzyme subunits, NOX2, p40phox and p67phox along with the antioxidant enzymes SOD1, SOD2 and GPx. Cancer cachexia was also associated with a 1.3-fold decrease in SOD1 and 2.0-fold decrease in GPx enzyme activity. Conclusion - Despite increased superoxide levels in cachectic skeletal muscle, NOX enzyme subunits, NOX2, p40phox and p67phox, were downregulated along with the expression and activity of the antioxidant enzymes. Therefore, the increased superoxide levels in cachectic skeletal muscle may be attributed to the reduction in the activity of endogenous antioxidant enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generally accepted paradigm of 'inert' and 'mono functional' excipient in dosage form has been recently challenged with the development of individual excipients capable of exhibiting multiple functions (e.g. binder-disintegrants, surfactant which affect P-gp function). The proposed study has been designed within the realm of multifunctionality and is the first and novel investigation towards evaluation of aspartic acid as a filler and disintegration enhancing agent for the delivery of biopharmaceutical class IV model drug trimethoprim. The study investigated powder characteristics using angle of repose, laser diffractometry and scanning electron microscopy (SEM). The prepared tablets were characterised using Heckel analysis, disintegration time and tensile strength measurements. Although Heckel analysis revealed that both TMP and TMP aspartate salt have high elasticity, the salt form produced a stronger compact which was attributed to the formation of agglomerates. Aspartic acid was found to have high plasticity, but its incorporation into the formulations was found to have a negative impact on the compaction properties of TMP and its salt. Surface morphology investigations showed that mechanical interlocking plays a vital role in binding TMP crystals together during compaction, while the small particle size of TMP aspartate agglomerates was found to have significant impact on the tensile strength of the tablets. The study concluded that aspartic acid can be employed as filler and disintegrant and that compactability within tablets was independent of the surface charge of the excipients.