870 resultados para Spinal cord Growth
Resumo:
Motor neuron disease (MND) is characterised by progressive deterioration of the corticospinal tract, brainstem, and anterior horn cells of the spinal cord. There is no pathognomonic test for the diagnosis of MND, and physicians rely on clinical criteria-upper and lower motor neuron signs-for diagnosis. The presentations, clinical phenotypes, and outcomes of MND are diverse and have not been combined into a marker of disease progression. No single algorithm combines the findings of functional assessments and rating scales, such as those that assess quality of life, with biological markers of disease activity and findings from imaging and neurophysiological assessments. Here, we critically appraise developments in each of these areas and discuss the potential of such measures to be included in the future assessment of disease progression in patients with MND.
Resumo:
Purpose. The aims of this study are to evaluate whether cytochrome P450 (CYP)2D1/2D2-deficient dark agouti (DA) rats and/or CYP2D1/2D2-replete Sprague-Dawley (SD) rats are suitable preclinical models of the human, with respect to mirroring the very low plasma concentrations of metabolically derived oxymorphone seen in humans following oxycodone administration, and to examine the effects of streptozotocin-induced diabetes on the pharmacokinetics of oxycodone and its metabolites, noroxycodone and oxymorphone, in both rodent strains. Methods. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry was used to quantify the serum concentrations of oxycodone, noroxycodone, and oxymorphone following subcutaneous administration of bolus doses of oxycodone (2 mg/kg) to groups of nondiabetic and diabetic rats. Results. The mean (+/- SEM) areas under the serum concentration vs. time curves for oxycodone and noroxycodone were significantly higher in DA relative to SD rats (diabetic, p < 0.05; nondiabetic, p < 0.005). Serum concentrations of oxymorphone were very low (< 6.9 nM). Conclusions. Both DA and SD rats are suitable rodent models to study oxycodone's pharmacology, as their systemic exposure to metabolically derived oxymorphone (potent mu-opioid agonist) is very low, mirroring that seen in humans following oxycodone administration. Systemic exposure to oxycodone and noroxycodone was consistently higher for DA than for SD rats showing that strain differences predominated over diabetes status.
Resumo:
GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.
Resumo:
1 The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. 2 In the absence of external Mg2+ ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. 3 The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per similar to20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. 4 The inhibition of the open NMDA receptor by external Mg2+ and 5-HT was not additive, suggesting competition between Mg2+ and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg2+. 5 The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT = 5-methyltryptamine > tryptamine > 7-methyltryptamine > 5-HTmuch greater than tryptophan melatonin. 6 Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration.
Resumo:
Neurodegenerative diseases such as Huntington's disease, ischemia, and Alzheimer's disease (AD) are major causes of death. Recently, metabotropic glutamate receptors (mGluRs), a group of seven-transmembrane-domain proteins that couple to G-proteins, have become of interest for studies of pathogenesis. Group I mGluRs control the levels of second messengers such as inositol 1,4,5-triphosphate (IP3) Cal(2+) ions and cAMP. They elicit the release of arachidonic acid via intracellular Ca2+ mobilization from intracellular stores such as mitochondria and endoplasmic reticulum. This facilitates the release of glutamate and could trigger the formation of neurofibrillary tangles, a pathological hallmark of AD. mGluRs regulate neuronal injury and survival, possibly through a series of downstream protein kinase and cysteine protease signaling pathways that affect mitochondrially mediated programmed cell death. They may also play a role in glutamate-induced neuronal death by facilitating Cal(2+) mobilization. Hence, mGluRs have become a target for neuroprotective drug development. They represent a pharmacological path to a relatively subtle amelioration of neurotoxicity because they serve a modulatory rather than a direct role in excitatory glutamatergic transmission.
Resumo:
A captive yellow-tailed black cockatoo (Calyptorhynchus funereus) and 2 free-living tawny frogmouths (Podargus strigoides), both native Australian species, were presented with neurologic signs including depression and pelvic limb paresis and paralysis. Despite supportive treatment, all 3 birds died or were euthanatized. On histologic examination, sections of metastrongyloid nematode larvae were found in the central nervous system of all 3 birds, whereas intact larvae, identified as Angiostrongylus cantonensis, were recovered from the brain and spinal cord of 2 birds. Angiostrongylus cantonensis, the rat lungworm. has an obligatory migratory phase through the host's central nervous system, which can cause severe pathologic lesions. Natural infections in accidental hosts have been documented only in mammals, and to our knowledge, angiostrongyliasis in avian hosts has not been previously reported.
Resumo:
A 12-year-old cat was presented to the University of Queensland's Small Animal Teaching Hospital with a 1-day history of left herniparesis of acute onset, with no evidence of trauma or toxin exposure. Neurological examination findings were consistent with a lesion in the caudal left cervical spinal cord (C6 to C8), which was non-painful and had not progressed since the onset of clinical signs. No other abnormalities were found, although myelography showed a mild swelling involving the caudal cervical and cranial thoracic spinal segments. A diagnosis of suspected fibrocartilaginous embolism was made on the basis of the history, clinical presentation and diagnostic tests results, making this case the first report of a suspected fibrocartilaginous embolism in a cat that returned to normal function.
Resumo:
In the embryonic forebrain, pioneer axons establish a simple topography of dorsoventral and longitudinal tracts. The cues used by these axons during the initial formation of the axon scaffold remain largely unknown. We have investigated the axon guidance role of Neogenin, a member of the immunoglobulin (Ig) superfamily that binds to the chemoattractive ligand Netrin-1, as well as to the chemorepulsive ligand repulsive guidance molecule (RGMa). Here, we show strong expression of Neogenin and both of its putative ligands in the developing Xenopus forebrain. Neogenin loss-of-function mutants revealed that this receptor was essential for axon guidance in an early forming dorsoventral brain pathway. Similar mutant phenotypes were also observed following loss of either RGMa or Netrin-1. Simultaneous partial knock downs of these molecules revealed dosage-sensitive interactions and confirmed that these receptors and ligands were acting in the same pathway. The results provide the first evidence that Neogenin acts as an axon guidance molecule in vivo and support a model whereby Neogenin-expressing axons respond to a combination of attractive and repulsive cues as they navigate their ventral trajectory. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
Objective: To evaluate the effectiveness of a programme of static positional stretches and positioning of the stroke-affected shoulder for maintaining shoulder external rotation and decreasing hemiplegic shoulder pain. Design: Randomized controlled trial with pretest and posttest design. Setting: Inpatient rehabilitation unit. Subjects: Thirty-two participants ( 17 treatment, 15 comparison) with a first time stroke who were admitted for rehabilitation. Interventions: Treatment participants completed a programme of static positional stretches of the stroke-affected shoulder twice daily and positioned the stroke-affected upper limb in an armrest support at all other times when seated. Main measures: The main outcome measures were pain-free range of motion into external rotation, pain in the stroke-affected shoulder at rest and with movement, motor recovery and functional independence. Results: All participants demonstrated a significant loss of external rotation ( P = 0.005) with no significant group differences. All participants demonstrated a significant improvement in motor recovery ( P < 0.01) and functional independence ( P < 0.01) with no significant group differences. There were no significant effects for pain. The comparison group recorded a decrease in mean pain reported with movement from admission to discharge, and the treatment group recorded an increase. Conclusions: Participation in the management programme did not result in improved outcomes. The results of this study do not support the application of the programme of static positional stretches to maintain range of motion in the shoulder. The effect of increasing pain for the treatment group requires further investigation.
Resumo:
Although glycine receptor Cl- channels (GlyRs) have long been known to mediate inhibitory neurotransmission onto spinal nociceptive neurons, their therapeutic potential for peripheral analgesia has received little attention. However, it has been shown that alpha 3-subunit-containing GlyRs are concentrated into regions of the spinal cord dorsal horn where nociceptive afferents terminate. Furthermore, inflammatory mediators specifically inhibit alpha 3-containing GlyRs, and deletion of the murine alpha 3 gene confers insensitivity to chronic inflammatory pain. This strongly implicates GlyRs in the inflammation-mediated disinhibition of centrally projecting nociceptive neurons. Future therapies aimed at specifically increasing current flux through alpha 3-containing GlyRs may prove effective in providing analgesia.
Resumo:
Members of the Wnt family and their receptors, the Frizzleds, are key regulators of pivotal developmental processes including embryonic patterning, specification of cell fate, and determination of cell polarity. The versatility and complexity of Wnt signaling has been further highlighted by the emergence of a novel family of Wnt receptors, the Ryk family. In mammals and flies, Ryk is a key chemorepulsive axon guidance receptor responsible for the establishment of important axon tracts during nervous system development. Although the function of Ryk is currently best understood with respect to this role, its widespread expression, both in developing tissues and in the adult, suggests that Ryk may regulate many essential biological processes. This hypothesis is supported by the multiple developmental phenotypes apparent in Ryk loss-of-function mice. These mice display a variety of embryonic abnormalities, including disruption of skeletal, craniofacial and cardiac development. Here we review Ryk structure and function focusing on its activity as an axon guidance receptor. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Ryk (receptor related to tyrosine kinase) has been shown to be a novel Wnt receptor in both Caenorhabditis elegans and Drosophila melanogaster. Recently, Ryk-Wnt interactions were shown to guide corticospinal axons down the embryonic mouse spinal cord. Here we show that, in Ryk-deficient mice, cortical axons project aberrantly across the major forebrain commissure, the corpus callosum. Many mouse mutants have been described in which loss-of-function mutations result in the inability of callosal axons to cross the midline, thereby forming Probst bundles on the ipsilateral side. In contrast, loss of Ryk does not interfere with the ability of callosal axons to cross the midline but impedes their escape from the midline into the contralateral side. Therefore, Ryk(-/-) mice display a novel callosal guidance phenotype. We also show that Wnt5a acts as a chemorepulsive ligand for Ryk, driving callosal axons toward the contralateral hemisphere after crossing the midline. In addition, whereas callosal axons do cross the midline in Ryk(-/-) embryos, they are defasciculated on the ipsilateral side, indicating that Ryk also promotes fasciculation of axons before midline crossing. In summary, this study expands the emerging role for Wnts in axon guidance and identifies Ryk as a key guidance receptor in the establishment of the corpus callosum. Our analysis of Ryk function further advances our understanding of the molecular mechanisms underlying the formation of this important commissure.
Resumo:
Neogenin, a close relative of the axon guidance receptor Deleted in Colorectal Cancer (DCC), has been shown to be a receptor for members of the Netrin and Repulsive Guidance Molecule (RGM) families. While Netrin-l-Neogenin interactions result in a chernoattractive axon guidance response, the interaction between Neogenin and RGMa induces a chemorepulsive response. Evidence is now accumulating that Neogenin is a multi-functional receptor regulating many diverse developmental processes, including neural tube and mammary gland formation, myogenesis and angiogenesis. Little is known of the function of Neogenin in the adult, however, a novel role in the regulation of iron homeostasis is now emerging. While the signal transduction pathways activated by Neogenin are poorly understood, it is clear that the functional outcome of Neogenin activation, at least in the embryo, depends on both the developmental context as well as the nature of the ligand. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVES: As visceral afferents from different regions of the gastrointestinal tract converge at the level of the spinal cord, we hypothesized that sensitization of one gut organ would induce visceral hypersensitivity in another gut organ, remote to the sensitizing stimulus. METHODS: Protocol 1: Eight healthy male volunteers, age 30 +/- 8.2 yr, underwent three studies on different days. Esophageal pain thresholds (PT) were recorded at 10-min intervals prior to and for 2 h following a 30-min duodenal infusion of either 0.15 M hydrochloric acid (HCl), saline, or no infusion. Five subjects repeated the study to demonstrate reproducibility. Protocol 2: Esophageal evoked potentials (EEP) were studied in six subjects on two occasions prior to and 1 h after a 30-min duodenal infusion of 0.15 M HCl or saline. RESULTS: Protocol 1: After acid infusion, there were reproducible reductions in esophageal PT (ICC = 0.88), which were maximal at 110 min (15.05 +/- 2.25 mA) (p < 0.002). Following saline infusion there was an increase in esophageal PT (ICC = 0.71), which was similar to the no-infusion condition (6.21 +/- 1.54 mA vs 8.5 + 7.6 mA; p > 0.05). Protocol 2: Esophageal sensation scores increased (p= 0.02) after acid, but not after saline infusion (p= 0.1). A comparison of the latencies of EEP components prior to and following acid and saline infusion revealed a reduction in the N1 (p= 0.02) and P2 components (p= 0.04). CONCLUSION: This study provides the first objective evidence that duodenal acidification can induce esophageal hypersensitivity associated with changes in sensitivity of the central visceral pain pathway. As the esophagus was remote from the sensitizing stimulus, central sensitization of spinal dorsal horn neurons is likely to have contributed to these changes.
Resumo:
Although visceral hypersensitivity is thought to be important in generating symptoms in functional gastrointestinal disorders, the neural mechanisms involved are poorly understood. We recently showed that central sensitization (hyperexcitability of spinal cord sensory neurones) may play an important role. In this study, we demonstrate that after a 30-min infusion of 0.15 M HCl acid into the healthy human distal esophagus, we see a reduction in the pain threshold to electrical stimulation of the non-acid-exposed proximal esophagus (9.6 ± 2.4 mA) and a concurrent reduction in the latency of the N1 and P2 components of the esophageal evoked potentials (EEP) from this region (10.4 ± 2.3 and 15.8 ± 5.3 ms, respectively). This reduced EEP latency indicates a central increase in afferent pathway velocity and therefore suggests that hyperexcitability within the central visceral pain pathway contributes to the hypersensitivity within the proximal, non-acid-exposed esophagus (secondary hyperalgesia/allodynia). These findings provide the first electrophysiological evidence that central sensitization contributes to human visceral hypersensitivity.