914 resultados para Space charge effects
Resumo:
Abstract: Loss of central vision caused by age-related macular degeneration (AMD) is a problem affecting increasingly large numbers of people within the ageing population. AMD is the leading cause of blindness in the developed world, with estimates of over 600,000 people affected in the UK . Central vision loss can be devastating for the sufferer, with vision loss impacting on the ability to carry out daily activities. In particular, inability to read is linked to higher rates of depression in AMD sufferers compared to age-matched controls. Methods to improve reading ability in the presence of central vision loss will help maintain independence and quality of life for those affected. Various attempts to improve reading with central vision loss have been made. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous experimental work and theoretical arguments on spatial integrative properties of the peripheral retina suggest that ‘visual crowding’ may be a major factor contributing to inefficient reading. Crowding refers to the phenomena in which juxtaposed targets viewed eccentrically may be difficult to identify. Manipulating text spacing of reading material may be a simple method that reduces crowding and benefits reading ability in macular disease patients. In this thesis the effect of textual manipulation on reading speed was investigated, firstly for normally sighted observers using eccentric viewing, and secondly for observers with central vision loss. Test stimuli mimicked normal reading conditions by using whole sentences that required normal saccadic eye movements and observer comprehension. Preliminary measures on normally-sighted observers (n = 2) used forced-choice procedures in conjunction with the method of constant stimuli. Psychometric functions relating the proportion of correct responses to exposure time were determined for text size, font type (Lucida Sans and Times New Roman) and text spacing, with threshold exposure time (75% correct responses) used as a measure of reading performance. The results of these initial measures were used to derive an appropriate search space, in terms of text spacing, for assessing reading performance in AMD patients. The main clinical measures were completed on a group of macular disease sufferers (n=24). Firstly, high and low contrast reading acuity and critical print size were measured using modified MNREAD test charts, and secondly, the effect of word and line spacing was investigated using a new test, designed specifically for this study, called the Equal Readability Passages (ERP) test. The results from normally-sighted observers were in close agreement with those from the group of macular disease sufferers. Results show that: (i) optimum reading performance was achieved when using both double line and double word spacing; (ii) the effect of line spacing was greater than the effect of word spacing (iii) a text size of approximately 0.85o is sufficiently large for reading at 5o eccentricity. In conclusion, the results suggest that crowding is detrimental to reading with peripheral vision, and its effects can be minimized with a modest increase in text spacing.
Resumo:
Background - When a moving stimulus and a briefly flashed static stimulus are physically aligned in space the static stimulus is perceived as lagging behind the moving stimulus. This vastly replicated phenomenon is known as the Flash-Lag Effect (FLE). For the first time we employed biological motion as the moving stimulus, which is important for two reasons. Firstly, biological motion is processed by visual as well as somatosensory brain areas, which makes it a prime candidate for elucidating the interplay between the two systems with respect to the FLE. Secondly, discussions about the mechanisms of the FLE tend to recur to evolutionary arguments, while most studies employ highly artificial stimuli with constant velocities. Methodology/Principal Finding - Since biological motion is ecologically valid it follows complex patterns with changing velocity. We therefore compared biological to symbolic motion with the same acceleration profile. Our results with 16 observers revealed a qualitatively different pattern for biological compared to symbolic motion and this pattern was predicted by the characteristics of motor resonance: The amount of anticipatory processing of perceived actions based on the induced perspective and agency modulated the FLE. Conclusions/Significance - Our study provides first evidence for an FLE with non-linear motion in general and with biological motion in particular. Our results suggest that predictive coding within the sensorimotor system alone cannot explain the FLE. Our findings are compatible with visual prediction (Nijhawan, 2008) which assumes that extrapolated motion representations within the visual system generate the FLE. These representations are modulated by sudden visual input (e.g. offset signals) or by input from other systems (e.g. sensorimotor) that can boost or attenuate overshooting representations in accordance with biased neural competition (Desimone & Duncan, 1995).
Resumo:
The load-bearing biomechanical role of the intervertebral disc is governed by the composition and organization of its major macromolecular components, collagen and aggrecan. The major function of aggrecan is to maintain tissue hydration, and hence disc height, under the high loads imposed by muscle activity and body weight. Key to this role is the high negative fixed charge of its glycosaminoglycan side chains, which impart a high osmotic pressure to the tissue, thus regulating and maintaining tissue hydration and hence disc height under load. In degenerate discs, aggrecan degrades and is lost from the disc, particularly centrally from the nucleus pulposus. This loss of fixed charge results in reduced hydration and loss of disc height; such changes are closely associated with low back pain. The present authors developed biomimetic glycosaminoglycan analogues based on sulphonate-containing polymers. These biomimetics are deliverable via injection into the disc where they polymerize in situ, forming a non-degradable, nuclear "implant" aimed at restoring disc height to degenerate discs, thereby relieving back pain. In vitro, these glycosaminoglycan analogues possess appropriate fixed charge density, hydration and osmotic responsiveness, thereby displaying the capacity to restore disc height and function. Preliminary biomechanical tests using a degenerate explant model showed that the implant adapts to the space into which it is injected and restores stiffness. These hydrogels mimic the role taken by glycosaminoglycans in vivo and, unlike other hydrogels, provide an intrinsic swelling pressure, which can maintain disc hydration and height under the high and variable compressive loads encountered in vivo. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A semi-quantitative model is put forward elucidating the role of spatial inhomogeneity of charge carrier mobility in organic field-effect transistors. The model, based on electrostatic arguments, allows estimating the effective thickness of the conducting channel and its changes in function of source-drain and gate voltages. Local mobility gradients in the direction perpendicular to the insulator/semiconductor interface translate into voltage dependences of the average carrier mobility in the channel, resulting in positive or negative deviations of current-voltage characteristics from their expected shapes. The proposed effect supplements those described in the literature, i.e., density-dependent mobility of charge carriers, short-channel effects, and contribution of contact resistance.
Resumo:
An ordered macroporous host (mac-SiO2) has been used to prevent aggregation of layered photocatalysts based on carbon nitride. Using typical carbon nitride synthesis conditions, cyanamide was condensed at 550 °C in the presence and absence of mac-SiO2. Condensation in the absence of mac-SiO2 results in materials with structural characteristics consistent with the carbon nitride, melon, accompanied by ca. 2 wt% carbonization. For mac-SiO2 supported materials, condensation occurs with greater carbonization (ca. 6 wt%). On addition of 3 wt% Pt cocatalyst photocatalytic hydrogen production under visible light is found to be up to 10 times greater for the supported composites. Time-resolved photoluminescence spectroscopy shows that excited state relaxation is more rapid for the mac-SiO2 supported materials suggesting faster electron-hole recombination and that supported carbon nitride does not exhibit improved charge separation. CO2 temperature programmed desorption indicates that enhanced photoactivity of supported carbon nitride is attributable to an increased surface area compared to bulk carbon nitride and an increase in the concentration of weakly basic catalytic sites, consistent with carbon nitride oligomers.
Resumo:
The principal theme of this thesis is the effect of yoked prisms on body posture and egocentric perception. Yoked prisms have been clinically used in the management of a variety of visual and neuro-motor dysfunctions. Most studies have been conducted in pathological populations by studying the effects of prismatic adaptation, without distinguishing short and long term effects. In this study, postural and perceptual prismatic effects have been studied by preventing prism adaptation. A healthy population was selected in order to investigate the immediate prismatic effects, when there is no obvious benefit from their use for the individual. Posturography was used to assess changes in weight distribution and shifts in centre of pressure (barycentre). In addition, photographic analyses were used to assess effects on posture on the x and z axis. Experiments with space board and visual midline shift were used for the evaluation of spatial perception and egocentric localisation. One pair of 8 Δ yoked prisms base left (BL) and one pair of 8 Δ yoked prisms base up (BU) were applied randomly and compared to a pair of plano lenses. Results suggest that immediate prismatic effects take place on a perceptual level and are reflected on an altered body posture respectively without significant changes in weight distribution. Yoked prisms BL showed a rightward rotational effect on spatial perception by expanding space on the z axis when viewing through the base of the prism and constricting space through the apex of the prism. Body posture responded respectively to what was visually perceived by altering posture. A rightward shift and tilt of the head was recorded along with the hips shift and shoulders tilt in the dame direction. Additionally, right shoulder shifted backwards and an angular midline shift to the right was recorded. The egocentric localisation was affected by shifting the midline perception to the left. Yoked prisms BU resulted on a head shift forward and a reduction of the head-neck angle by bringing the chin closer to the chest. The egocentric localisation was altered on the vertical axis providing subjects the perception that their eye level was higher during the experiment. In conclusion, yoked prisms seemed to induce changes in body posture, mainly in the upper body and head, without any significant changes in weight distribution. These changes are partially reflected in spatial perception tests and egocentric localisation before any prismatic adaptation takes place.
Resumo:
We studied the development of leaf characters in two Southeast Asian dipterocarp forest trees under different photosynthetic photon flux densities (PFD) and spectral qualities (red to far-red, R:FR). The two species, Hopea helferi and H. odorata, are taxonomically closely related but differ in their ecological requirements; H. helferi is more drought tolerant and H. odorata more shade tolerant. Seedlings were grown in replicated shadehouse treatments of differing PFD and R:FR. We measured or calculated (1) leaf and tissue thicknesses; (2) mesophyll parenchyma, air space, and lignified tissue volumes; (3) mesophyll air volumes (Vmes/Asurf) and surfaces (Ames/Asurf); (4) palisade cell length and width; (5) chlorophyll/cm2 and a/ b; (6) leaf absorption; and (7) attenuance/absorbance at 652 and 550 nm. These characters varied in response to light conditions in both taxa. Characters were predominantly affected by PFD, and R:FR slightly influenced many characters. Leaf characters of H. odorata were more plastic in response to treatment conditions. Characters were correlated with each other in a complex fashion. Variation in leaf anatomy is most likely a consequence of increasing leaf thickness in both taxa, which may increase mechanical strength and defense against herbivory in more exposed environments. Variation in leaf optical properties was most likely affected by pigment photo-bleaching in treatments of more intense PFD and was not correlated with Amax. The greater plasticity of leaf responses in H. odorata helps explain the acclimation over the range of light conditions encountered by this shade-tolerant taxon. The dense layer of scales on the leaf undersurface and other anatomical characters in H. helferi reduced gas exchange and growth in this drought-tolerant tree.
Resumo:
The focus of this study was to explain the extent to which theoretically effective teaching strategies taught in a course on generic instructional strategies are being implemented by teachers in their actual teaching practice. ^ A multivariate causal-comparative (ex-post-facto) design was used to answer the research question. A teacher observation protocol, the General Instructional Strategies Analysis (GISA) was constructed and used to assess the utilization of instructional strategies in the classroom. The data of this study also included open-ended field notes taken during observations. ^ Multivariate Analyses of Variance (MANOVA) was used to compare the teaching strategies (set, effective explanation, hands-on activity, cooperative learning activity, higher order questioning, closure) of the group who had taken a general instructional strategies course (N=36) and the group who had not (N=36). Results showed a statistically significant difference between the two groups. The group who had taken the course implemented these strategies more effectively in almost all categories of effective teaching. Follow-up univariate tests of the dependent variables showed significant differences between the two groups in five of the six areas (hands-on activity being an exception). A second MANOVA compared the two groups on the effective use of attending behaviors (teacher movement/eye contact/body language/physical space, brief verbal acknowledgements/voice inflection/modulation/pitch, use of visuals, prompting/probing, praise/feedback/rewards, wait-time I and II). Results also showed a multivariate difference between the two groups. Follow-up univariate tests on the related dependent variables showed that five of the six were significantly different between the two groups. The group who had taken the course implemented the strategies more effectively. An analysis of the field notes provided further evidence regarding the pervasiveness of these differences between the teaching practices of the two groups. ^ It was concluded that taking a course in general instructional strategies increases the utilization of effective strategies in the classroom by teachers. ^
Resumo:
The origins of population dynamics depend on interplay between abiotic and biotic factors; the relative importance of each changing across space and time. Predation is a central feature of ecological communities that removes individuals (consumption) and alters prey traits (non-consumptive). Resource quality mitigates non-consumptive predator effects by stimulating growth and reproduction. Disturbance resets predator-prey interactions by removing both. I integrate experiments, time-series analysis, and performance trials to examine the relative importance of these on the population dynamics of a snail species by studying a variety of their traits. A review of ninety-three published articles revealed that snail abundance was much less in the Everglades and similar ecosystems compared to all other freshwater ecosystems considered. Separating consumptive from non-consumptive (cues) predator effects at different phosphorous levels with an experiment determined that phosphorous stimulated, but predator cues inhibited snail growth (34% vs. 23%), activity (38% vs. 53%), and reproductive effort (99% vs. 90%) compared to controls. Cues induced taller shells and smaller openings and moved to refugia where they reduced periphyton by 8%. Consumptive predator effects were minor in comparison. In a reciprocal transplant cage experiment along a predator cue and phosphorous gradient created by a canal, snails grew 10% faster and produced 37% more eggs far from the canal (fewer cues) when fed phosphorous-enriched periphyton from near the canal. Time-series analysis at four sites and predator performance trials reveal that phosphorous-enriched regions support larger snail populations, seasonal drying removes snails at all sites, crayfish negatively affect populations in enriched regions, and molluscivorous fish consume snails in the wet season. Combining these studies reveals interplay between resources, predators, and seasonality that limit snail populations in the Everglades and lead to their low abundance compared to other freshwater ecosystems. Resource quality is emerging as the critical factor because improving resources profoundly improved growth and reproduction; seasonal drying and predation become important at times and places. This work contributes to the general understanding in ecology of the relative importance of different factors that structure populations and provides evidence that bolsters monitoring efforts to assess the Comprehensive Everglades Restoration Plan that show phosphorous enrichment is a major driver of ecosystem change.
Resumo:
To navigate effectively in three-dimensional space, flying insects must approximate distances to nearby objects. Humans are able to use an array of cues to guide depth perception in the visual world. However, some of these cues are not available to insects that are constrained by their rigid eyes and relatively small body size. Flying fruit flies can use motion parallax to gauge the distance of nearby objects, but using this cue becomes a less effective strategy as objects become more remote. Humans are able to infer depth across far distances by comparing the angular distance of an object to the horizon. This study tested if flying fruit flies, like humans, use the relative position of the horizon as a depth cue. Fruit flies in tethered flight were stimulated with a virtual environment that displayed vertical bars of varying elevation relative to a horizon, and their tracking responses were recorded. This study showed that tracking responses of the flies were strongly increased by reducing the apparent elevation of the bar against the horizon, indicating that fruit flies may be able to assess the distance of far off objects in the natural world by comparing them against a visual horizon.
Resumo:
The objective of this thesis was to investigate the effects of the built environment on the outcome of young patients. This investigation included recent innovations in children's hospitals that integrated both medical and architectural case studies as part of their design issues. In addition, the intervention responded to man-made conditions and natural elements of the site. The thesis project, a Children's Rehabilitation Hospital, is located at 1500 N.W. River Drive in Miami, Florida. The thesis intervention emerged from a site analysis that focused on the shifting of the urban grid, the variation in scale of the immediate context and the visual-physical connection to the river's edge. Furthermore, it addressed the issues of overnight accommodation for patient's families, as well as sound control through the use of specific materials in space enclosures and open courtyards. The key to the success of this intervention lies in the special attention given to the integration between nature and the built environment. Issues such as the incorporation of nature within a building through the use of vistas and the exploitation of natural light through windows and skylights, were pivotal in the creation of a pleasant environment for visitors, employees and young patients.
Resumo:
The performance of a compact, wearable Conformal Strongly Coupled Magnetic Resonance (CSCMR) system is studied when the antenna is in the air and is worn on a user’s arm. The wireless powering system consists of the receiver and load elements designed on a printed circuit board that is attached to a polyester fabric band. The wearable antenna achieves high efficiency, has a small volume, and can be easily printed on substrates. Although the user effect on mobile terminal antennas has been studied in detail, absorption losses in wearable antennas have not been widely investigated. Our results show that efficiency of the antenna in free space is 70% and on a user’s arm is 50%. Human tissue in the close proximity of our wearable Conformal SCMR caused a decrease in radiated efficiency and total efficiency. This undesired degradation in antenna efficiency might be attributed to body loss and absorption losses. Our findings can be used as a reference for future studies on wearable devices and their applications, such as health and sports monitoring.
Resumo:
Thèse réalisée en cotutelle entre l'Université de Montréal et l'Université Pierre et Marie Curie, Paris 06, Sorbonne Universités.
Resumo:
This study examined the intergenerational effects of parental conviction of a substance-related charge on children's academic performance and, conditional on a conviction, whether completion of an adult drug treatment court (DTC) program was associated with improved school performance. State administrative data from North Carolina courts, birth records, and school records were linked for 2005-2012. Math and reading end-of-grade test scores and absenteeism were examined for 5 groups of children, those with parents who: were not convicted on any criminal charge, were convicted on a substance-related charge and not referred by a court to a DTC, were referred to a DTC but did not enroll, enrolled in a DTC but did not complete, and completed a DTC program. Accounting for demographic and socioeconomic factors, the school performance of children whose parents were convicted of a substance-related offense was worse than that of children whose parents were not convicted on any charge. These differences were statistically significant but substantially reduced after controlling for socioeconomic characteristics; for example, mother's educational attainment. We found no evidence that parent participation in an adult DTC program led to improved school performance of their children. While the children of convicted parents fared worse on average, much--but not all--of this difference was attributed to socioeconomic factors, with the result that parental conviction remained a risk factor for poorer school performance. Even though adult DTCs have been shown to have other benefits, we could detect no intergenerational benefit in improved school performance of their children.
Resumo:
This thesis investigates the emerging InAlN high electron mobility transistor (HEMT) technology with respect to its application in the space industry. The manufacturing processes and device performance of InAlN HEMTs were compared to AlGaN HEMTs, also produced as part of this work. RF gain up to 4 GHz was demonstrated in both InAlN and AlGaN HEMTs with gate lengths of 1 μm, with InAlN HEMTs generally showing higher channel currents (~150 c.f. 60 mA/mm) but also degraded leakage properties (~ 1 x 10-4 c.f. < 1 x 10-8 A/mm) with respect to AlGaN. An analysis of device reliability was undertaken using thermal stability, radiation hardness and off-state breakdown measurements. Both InAlN and AlGaN HEMTs showed excellent stability under space-like conditions, with electrical operation maintained after exposure to 9.2 Mrad of gamma radiation at a dose rate of 6.6 krad/hour over two months and after storage at 250°C for four weeks. Furthermore a link was established between the optimisation of device performance (RF gain, power handling capabilities and leakage properties) and reliability (radiation hardness, thermal stability and breakdown properties), particularly with respect to surface passivation. Following analysis of performance and reliability data, the InAlN HEMT device fabrication process was optimised by adjusting the metal Ohmic contact formation process (specifically metal stack thicknesses and anneal conditions) and surface passivation techniques (plasma power during dielectric layer deposition), based on an existing AlGaN HEMT process. This resulted in both a reduction of the contact resistivity to around 1 x 10-4 Ω.cm2 and the suppression of degrading trap-related effects, bringing the measured gate-lag close to zero. These discoveries fostered a greater understanding of the physical mechanisms involved in device operation and manufacture, which is elaborated upon in the final chapter.