912 resultados para Societies, Scientific.
Resumo:
OBJECT Current data show a favorable outcome in up to 50% of patients with World Federation of Neurosurgical Societies (WFNS) Grade V subarachnoid hemorrhage (SAH) and a rather poor prediction of worst cases. Thus, the usefulness of the current WFNS grading system for identifying the worst scenarios for clinical studies and for making treatment decisions is limited. One reason for this lack of differentiation is the use of "negative" or "silent" diagnostic signs as part of the WFNS Grade V definition. The authors therefore reevaluated the WFNS scale by using "positive" clinical signs and the logic of the Glasgow Coma Scale as a progressive herniation score. METHODS The authors performed a retrospective analysis of 182 patients with SAH who had poor grades on the WFNS scale. Patients were graded according to the original WFNS scale and additionally according to a modified classification, the WFNS herniation (hWFNS) scale (Grade IV, no clinical signs of herniation; Grade V, clinical signs of herniation). The prediction of poor outcome was compared between these two grading systems. RESULTS The positive predictive values of Grade V for poor outcome were 74.3% (OR 3.79, 95% CI 1.94-7.54) for WFNS Grade V and 85.7% (OR 8.27, 95% CI 3.78-19.47) for hWFNS Grade V. With respect to mortality, the positive predictive values were 68.3% (OR 3.9, 95% CI 2.01-7.69) for WFNS Grade V and 77.9% (OR 6.22, 95% CI 3.07-13.14) for hWFNS Grade V. CONCLUSIONS Limiting WFNS Grade V to the positive clinical signs of the Glasgow Coma Scale such as flexion, extension, and pupillary abnormalities instead of including "no motor response" increases the prediction of mortality and poor outcome in patients with severe SAH.
Resumo:
Until today, most of the documentation of forensic relevant medical findings is limited to traditional 2D photography, 2D conventional radiographs, sketches and verbal description. There are still some limitations of the classic documentation in forensic science especially if a 3D documentation is necessary. The goal of this paper is to demonstrate new 3D real data based geo-metric technology approaches. This paper present approaches to a 3D geo-metric documentation of injuries on the body surface and internal injuries in the living and deceased cases. Using modern imaging methods such as photogrammetry, optical surface and radiological CT/MRI scanning in combination it could be demonstrated that a real, full 3D data based individual documentation of the body surface and internal structures is possible in a non-invasive and non-destructive manner. Using the data merging/fusing and animation possibilities, it is possible to answer reconstructive questions of the dynamic development of patterned injuries (morphologic imprints) and to evaluate the possibility, that they are matchable or linkable to suspected injury-causing instruments. For the first time, to our knowledge, the method of optical and radiological 3D scanning was used to document the forensic relevant injuries of human body in combination with vehicle damages. By this complementary documentation approach, individual forensic real data based analysis and animation were possible linking body injuries to vehicle deformations or damages. These data allow conclusions to be drawn for automobile accident research, optimization of vehicle safety (pedestrian and passenger) and for further development of crash dummies. Real 3D data based documentation opens a new horizon for scientific reconstruction and animation by bringing added value and a real quality improvement in forensic science.
Resumo:
This article introduces the emic–etic debate in the scientific study of religion\s and provides a frame for the special issue’s six articles on the topic. Departing from the broader debate’s early history in the 1960s, this article contextualizes the emic–etic debate and locates its point of entry into the scientific study of religion\s in the 1980s. This article argues that in the course of the debate the insider–outsider and emic–etic complexes have become entangled. In order to facilitate an understanding of the debate, this article maintains that the emic–etic debate in the scientific study of religion\s touches upon three central dimensions (existential–political, methodologi- cal, and epistemological). In order to move toward a clearer methodological and epis- temological framework, this article furthermore proposes an iterative model that locates insider–outsider at the level of observers and emic–etic at the level of categories.
Resumo:
AIMS Our aim was to report on a survey initiated by the European Association of Percutaneous Cardiovascular Interventions (EAPCI) concerning opinion on the evidence relating to dual antiplatelet therapy (DAPT) duration after coronary stenting. METHODS AND RESULTS Results from three randomised clinical trials were scheduled to be presented at the American Heart Association Scientific Sessions 2014 (AHA 2014). A web-based survey was distributed to all individuals registered in the EuroIntervention mailing list (n=15,200) both before and after AHA 2014. A total of 1,134 physicians responded to the first (i.e., before AHA 2014) and 542 to the second (i.e., after AHA 2014) survey. The majority of respondents interpreted trial results consistent with a substantial equipoise regarding the benefits and risks of an extended versus a standard DAPT strategy. Two respondents out of ten believed extended DAPT should be implemented in selected patients. After AHA 2014, 46.1% of participants expressed uncertainty about the available evidence on DAPT duration, and 40.0% the need for clinical guidance. CONCLUSIONS This EAPCI survey highlights considerable uncertainty within the medical community with regard to the optimal duration of DAPT after coronary stenting in the light of recent reported trial results. Updated recommendations for practising physicians to guide treatment decisions in routine clinical practice should be provided by international societies.
Resumo:
Switzerland has an extraordinarily rich archaeological heritage from the Neolithic and the Bronze Age, dating back nearly 7000 years. Since the mid-19th century, the first pile dwellings were discovered in the lakes of the Central Plateau. Since 2011 these sites are part of the UNESCO world heritage „Prehistoric pile-dwellings around the Alps“. Not only lakes, but also Swiss mountains preserve extraordinary archaeological remains: from an alpine pass in the Bernese Alps prehistoric objects are melting out from the ice. Perfect preservation conditions and modern archaeological methods allow exploring the development of early agrarian societies in this part of the world. We can reconstruct their settlements and follow their exchange with other communities. Archaeology under water and in alpine environments allows fascinating insights into the beginnings of our history.
Resumo:
Soils provide us with over 90% of all human food, livestock feed, fibre and fuel on Earth. Soils, however, have more than just productive functions. The key challenge in coming years will be to address the diverse and potentially conflicting demands now being made by human societies and other forms of life, while ensuring that future generations have the same potential to use soils and land of comparable quality. In a multi-level stakeholder approach, down-to-earth action will have to be supplemented with measures at various levels, from households to communities, and from national policies to international conventions. Knowledge systems, both indigenous and scientific, and related research and learning processes must play a central role. Ongoing action can be enhanced through a critical assessment of the impact of past achievements, and through better cooperation between people and institutions.
Resumo:
Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and level of confidence in an AOP, methodologies and tools are still being formalized. The Organization for Economic Co-operation and Development (OECD) Users' Handbook Supplement to the Guidance Document for Developing and Assessing AOPs (OECD 2014a; hereafter referred to as the OECD AOP Handbook) provides tailored Bradford-Hill (BH) considerations for systematic assessment of confidence in a given AOP. These considerations include (1) biological plausibility and (2) empirical support (dose-response, temporality, and incidence) for Key Event Relationships (KERs), and (3) essentiality of key events (KEs). Here, we test the application of these tailored BH considerations and the guidance outlined in the OECD AOP Handbook using a number of case examples to increase experience in more transparently documenting rationales for assigned levels of confidence to KEs and KERs, and to promote consistency in evaluation within and across AOPs. The major lessons learned from experience are documented, and taken together with the case examples, should contribute to better common understanding of the nature and form of documentation required to increase confidence in the application of AOPs for specific uses. Based on the tailored BH considerations and defining questions, a prototype quantitative model for assessing the WoE of an AOP using tools of multi-criteria decision analysis (MCDA) is described. The applicability of the approach is also demonstrated using the case example aromatase inhibition leading to reproductive dysfunction in fish. Following the acquisition of additional experience in the development and assessment of AOPs, further refinement of parameterization of the model through expert elicitation is recommended. Overall, the application of quantitative WoE approaches hold promise to enhance the rigor, transparency and reproducibility for AOP WoE determinations and may play an important role in delineating areas where research would have the greatest impact on improving the overall confidence in the AOP.
Resumo:
Context. OSIRIS, the scientific imaging system onboard the ESA Rosetta spacecraft, has been imaging the nucleus of comet 67P/Churyumov-Gerasimenko and its dust and gas environment since March 2014. The images serve different scientific goals, from morphology and composition studies of the nucleus surface, to the motion and trajectories of dust grains, the general structure of the dust coma, the morphology and intensity of jets, gas distribution, mass loss, and dust and gas production rates. Aims. We present the calibration of the raw images taken by OSIRIS and address the accuracy that we can expect in our scientific results based on the accuracy of the calibration steps that we have performed. Methods. We describe the pipeline that has been developed to automatically calibrate the OSIRIS images. Through a series of steps, radiometrically calibrated and distortion corrected images are produced and can be used for scientific studies. Calibration campaigns were run on the ground before launch and throughout the years in flight to determine the parameters that are used to calibrate the images and to verify their evolution with time. We describe how these parameters were determined and we address their accuracy. Results. We provide a guideline to the level of trust that can be put into the various studies performed with OSIRIS images, based on the accuracy of the image calibration.