924 resultados para Slag Viscosity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho teve como objetivo investigar os fenômenos que controlam a porosidade em corpos cerâmicos com fases vítreas, formadas pela ação de fundentes, e associá-los com sua microestrutura final. Foram selecionados os fundentes albita, feldspato alcalino, wollastonita e espodumênio, representativos daqueles comercializados no setor cerâmico, a partir de critérios como teor e tipo de álcali, e teor em SiO2 e Al2O3 na composição química. Estes fundentes foram formulados com cada uma das seguintes matérias-primas e combinações destas: quartzo, caulim e talco. As composições foram formuladas com o objetivo de obter-se uma gama de diferentes microestruturas, variando porosidade, e a presença de fases vítreas ou cristalinas. Os corpos cerâmicos foram obtidos em fornos elétricos, tipo mufla, variando-se a temperatura entre 1140 e 1260°C, conforme a formulação investigada. Foram determinadas as propriedades dos corpos cerâmicos, como porosidade aparente, absorção de água e retração linear. Os resultados obtidos foram associados com sua microestrutura e formulação. Para tanto, fez-se uso de microscopia eletrônica de varredura e difratometria de raios-X. Em especial, a porosidade foi avaliada quanto sua distribuição, morfologia e tamanho, e sua influência na definição da microestrutura final, e relação com propriedades dos corpos cerâmicos investigados. Os resultados obtidos indicaram que o comportamento dos fundentes em massas cerâmicas define decisivamente a formação da porosidade em função da composição química do fundente e da combinação desta com a dos outros constituintes da massa cerâmica. O espodumênio forma fase vítrea reagindo basicamente com o quartzo em baixas temperaturas, retendo a porosidade principalmente junto às trincas de contração do mesmo. A albita propicia na expansão da porosidade e interconexão da mesma. O feldspato alcalino forma um líquido de maior viscosidade mantendo a menor porosidade e de maneira mais isolada. A wollastonita reage de modo diferenciado dos demais no que diz respeito à sílica presente, reagindo melhor na presença do alumínio e do magnésio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transaction costs have a random component in the bid-ask spread. Facing a high bid-ask spread, the consumer has the option to wait for better terms oI' trade, but only by carrying an undesirable portfolio balance. We present the best policy in this case. We pose the control problem and show that the value function is the uni que viscosity solution of the relevant variational inequality. Next, a numerical procedure for the problem is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A formação de emulsão de água-em-óleo gera um significativo incremento na viscosidade, o que afeta diretamente a produção do poço, pois aumenta a perda de carga ao longo da linha de produção, dificultando o escoamento e diminuindo a produção de óleo. A presença e natureza da emulsão, e seu impacto na reologia do petróleo, podem determinar a viabilidade econômica e técnica dos processos envolvidos. A medida que a fração de água aumenta e a temperatura é reduzida, o comportamento das emulsões se torna cada vez mais não-Newtoniano. A decorrência disso, é que a temperatura e a taxa de cisalhamento passam a ter maior impacto na variação da viscosidade das emulsões. Nesse estudo são propostos novos métodos que levam em conta essas variáveis. Os dados reológicos experimentais de 15 petróleos leves foram utilizados para avaliar o desempenho dos modelos existentes na literatura e compará-los com os novos métodos propostos nesse estudo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The system in-Ceram Alumina, produced by VITA, consists in a technique of prepare of a substructure of ceramics to dental crowns. First burning is made in the alumina decanted by slip casting process under a stone die that reproduces the tooth prepared to receive a crown. In a second burning, alumina is infiltrated by vitreous system, giving to this set a high mechanic resistance. In this work, it s made a study of the composition of a new infiltrating material more used nowadays, giving to alumina desirable mechanics proprieties to its using like substructure of support to ceramic s crown used in the market today. The addition of Lanthanum oxide (frit A) and calcium oxide (frit B) was made in attempt to increase the viscosity of LZSA and to reduce fusion temperature. The frits were put over samples of alumina and took to the tubular oven to 1400ºC under vacuum for two groups (groups 1 and 2). For another two groups (groups 3 and 4) it was made a second infiltration, following the same parameters of the first. A fifth group was utilized like group of control where the samples of pure alumina were not submitted to any infiltrating process. Glasses manifested efficient both in quality and results of analysis of mechanic resistance, being perfectly compatible with oral environment in this technical requisite. The groups that made a second infiltration had he best results of fracture toughness, qualify the use in the oral cavity in this technical question. The average of results achieved for mechanic resistance to groups 1, 2, 3, 4 and 5 were respectively 98 MPa, 90 MPa, 144 MPa, 236 MPa and 23 MPa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low tenacity presented by the Portland cement pastes used in the oil wells cementation has been motivating several researches with attention focused on alternative materials. Additives have been developed to generate flexible pastes with mechanical resistance capable to support the expansions and retractions of the metallic covering of the wells that submit to the steam injection, technique very used to increase the recovery factor in oil reservoirs with high viscosity. A fresh paste with inadequate rheological behavior may commit the cementation process seriously, involving flaws that affect the performance of the paste substantially in the hardened state. This work proposes the elaboration and the rheological analysis of Portland cement pastes with addition of residues of rubber tire in several proportions, with the aim of minimizing the damages provoked in the hem cementing of these wells. By thermogravimetric analysis, the particles of eraser that go by the sieve of 0,5mm (35 mesh) opening and treated superficially with NaOH solution of 1 mol/L presented appropriate thermal resistance for wells that submit to thermal cyclic. The evaluation of the study based on the results of the rheological analysis of the pastes, complemented by the mechanical analysis, thickening, stability, tenor of free water and filtrate loss, being used as parameter a paste reference, without rubber addition. The results showed satisfactory rheology, passive of few corrections; considerable loss of mechanical resistance (traction and compression), compensated by earnings of tenacity, however with established limits for its application in oil wells; satisfactory stability, free water and thickening time

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the search for products that act as corrosion inhibitors and do not cause environmental, impact the use of plant extracts as corrosion inhibitors is becoming a promising alternative. In this work the efficiency of polar extracts (ethanol extracts) obtained from the plants Anacardium occidentale Linn (AO) and Phyllantus amarus Schum. & Thonn (PA) as corrosion inhibitors were evaluated in different concentrations. For that AO and PA extracts were solubilized in the microemulsion systems (SME) containing saponified coconut oil as surfactant (SME -OCS and SME-OCS-1) in saline (NaCl 3,5 %) solution, which was also used as electrolyte. Both SME-OCS and SME-OCS-1 were characterized by surface tension and viscosity methods showing a Newtonian fluid behavior. The SME-OCS and SME-OCS-1 systems satisfactorily solubilized the polar extracts AO and PA with measurements carried out by ultraviolet spectroscopy. The measurements of corrosion inhibition efficiencies were performed by the electrochemical linear polarization resistance (LPR) technique as well as weight loss, on the surface of AISI 1020 carbon steel. The maximum corrosion inhibition efficiencies were determined by extrapolation of Tafel plots, showing the following values: 95,6 % for the system SME-OCS-AO, 98,9 % for the system SME-OCS-AO-1 and 93,4 % for the system SME-OCS-PA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lightweight oilwell cement slurries have been recently studied as a mean to improve zonal isolation and sheath-porous formation adherence. Foamed slurries consisting of Portland cement and air-entraining admixtures have become an interesting option for this application. The loss in hydrostatic pressure as a consequence of cement hydration results in the expansion of the air bubbles entrapped in the cement matrix, thus improving the sheath-porous formation contact. Consequently, slurries are able to better retain their water to complete the hydration process. The main objective of the present study was to evaluate the effect of the addition of an air-entraining admixture on the density, stability and permeability of composite slurries containing Portland cement and diatomite as light mineral load. Successful formulations are potential cementing materials for low fracture gradient oilwells. The experimental procedures used for slurry preparation and characterization were based on the American Petroleum Institute and ABNT guidelines Slurries containing a pre-established concentration of the air-entraining admixture and different contents of diatomite were prepared aiming at final densities of 13 to 15 lb/gal. The results revealed that the reduction of 15 to 25% of the density of the slurries did not significantly affect their strength. The addition of both diatomite and the air-entraining admixture increased the viscosity of the slurry providing better air-bubble retention in the volume of the slurry. Stable slurries depicted bottom to top density variation of less than 1.0 lb/gal and length reduction of the stability sample of 5.86 mm. Finally, permeability coefficient values between 0.617 and 0.406 mD were obtained. Therefore, lightweight oilwell cement slurries depicting a satisfactory set of physicochemical and mechanical properties can be formulated using a combination of diatomite and air-entraining admixtures for low fracture gradient oilwells

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of activities the of oil and gas sector have promoted the search for suitable materials for cementing oil wells. In the state of the Rio Grande do Norte, the integrity of the cement sheath tends to be impaired during steam injection, a procedure necessary to increase oil recovery in reservoirs with low-viscosity oil. The geopolymer is a material that can be used as alternative cement, since it has been used in the production of fire-resistant components, building structures, and for the control of toxic or radioactive residues. Geopolymers result from condensation polymer alkali aluminosilicates and silicates resulting three-dimensional polymeric structures. They are produced in a manner different from that of Portland cement, which is made an activating solution that is mixed with geopolymer precursor. Among the few works studied allowed us to conclude that the pastes prepared with metakaolin as precursor showed better performance of its properties. Several studies show the addition of waste clay as a means of reducing cost and improving end of the folder properties. On this basis, the goal is to study the influence of the addition of ceramic waste in geopolymer paste. To develop the study of rheology tests were carried out, filtered, thickening time, compressive strength, free water, specific gravity and permeability, according to the American Pretoleum Institute (API). The results for all formulations studied show that the folders have high mechanical strength to a light paste; low filtrate volume, absence of free water, very low permeability, slurry, consistent with a light paste, and thickening time low that can be corrected with the use of a retardant handle. For morphological characterization, microstructural, physical, chemical and thermal tests were carried out by XRD, MEV, DTA, TG, FTIR. In the trial of XRD, it was found that geopolymer is an amorphous material, with a peak of crystalline kaolinite. In tests of TG / DTA, revealed the presence of a significant event, which represents the mass loss related to water, and also observed the reduction of weight loss by increasing the concentration of ceramic waste. In the trial of MEV, we found a uniform matrix without the presence of other phases. In the trial of FT-IR, we observed the presence of the band related to water. From all results it was determined that the optimum concentration range of use is between 2.5 and 5% of waste ceramic

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil wells cementing is a critical step during the phase of well drilling, because problems during the operation of slurry pumping and an incomplete filling of the annular space between the metal casing and the formation can cause the slurry loss. Therefore, the slurry adopted in primary cementing an oil well must be properly dosed so that these problems are avoided during its pumping. When you drill a well in a weak rock formation requires even more careful, because should be a limit of hydrostatic pressure exerted during cementation, that does not occur rock collapse. With the objective of performing the cementing of a well whose formation is weak or unconsolidated are employed lighter slurries. Thus, this study used slurries with sodium silicate and nano silica in concentrations of 0,1; 0,4; 0,7 e 1,0 gpc, in which the slurries with nano silica showed the rheological parameters higher concentrations of up to 0.7 gpc and for concentration of 1.0 the slurry with sodium silicate obtained the highest values, remaining above the limits for application in fields, mainly wells with low fracture gradient, because a significant increase in viscosity may result in an increase in pressure pumping in operations of secondary cementations. Furthermore, there was no decrease in strength with increasing concentration of additive. Then, it is possible use of these additives to formulate Lighter slurry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The oil production in mature areas can be improved by advanced recovery techniques. In special, steam injection reduces the viscosity of heavy oils, thus improving its flow to surrounding wells. On the other hand, the usually high temperatures and pressures involved in the process may lead to cement cracking, negatively affecting both the mechanical stability and zonal isolation provided by the cement sheath of the well. The addition of plastic materials to the cement is an alternative to prevent this scenario. Composite slurries consisting of Portland cement and a natural biopolymer were studied. Samples containing different contents of biopolymer dispersed in a Portland cement matrix were prepared and evaluated by mechanical and rheological tests in order to assess their behavior according to API (American Petroleum Institute) guidelines. FEM was also applied to map the stress distribution encountered by the cement at bottom bole. The slurries were prepared according to a factorial experiment plan by varying three parameters, i.e., cement age, contents of biopolymer and water-to-cement ratio. The results revealed that the addition of the biopolymer reduced the volume of free water and the setting time of the slurry. In addition, tensile strength, compressive strength and toughness improved by 30% comparing hardened composites to plain Portland slurries. FEM results suggested that the stresses developed at bottomhole may be 10 to 100 times higher than the strength of the cement as evaluated in the lab by unconfined mechanical testing. An alternative approach is proposed to adapt the testing methodology used to evaluate the mechanical behavior of oilwell cement slurries by simulating the confined conditions encountered at bottornhole