872 resultados para Signal-subspace compression


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a method for the identification of different partial discharges (PDs) sources through the analysis of a collection of PD signals acquired with a PD measurement system. This method, robust and sensitive enough to cope with noisy data and external interferences, combines the characterization of each signal from the collection, with a clustering procedure, the CLARA algorithm. Several features are proposed for the characterization of the signals, being the wavelet variances, the frequency estimated with the Prony method, and the energy, the most relevant for the performance of the clustering procedure. The result of the unsupervised classification is a set of clusters each containing those signals which are more similar to each other than to those in other clusters. The analysis of the classification results permits both the identification of different PD sources and the discrimination between original PD signals, reflections, noise and external interferences. The methods and graphical tools detailed in this paper have been coded and published as a contributed package of the R environment under a GNU/GPL license.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto es diseñar un sistema capaz de controlar la velocidad de rotación de un motor DC en función del valor de temperatura obtenido de un sensor. Para ello se generará con un microcontrolador una señal PWM, cuyo ciclo de trabajo estará en función de la temperatura medida. En lo que respecta a la fase de diseño, hay dos partes claramente diferenciadas, relativas al hardware y al software. En cuanto al diseño del hardware puede hacerse a su vez una división en dos partes. En primer lugar, hubo que diseñar la circuitería necesaria para adaptar los niveles de tensión entregados por el sensor de temperatura a los niveles requeridos por ADC, requerido para digitalizar la información para su posterior procesamiento por parte del microcontrolador. Por tanto hubo que diseñar capaz de corregir el offset y la pendiente de la función tensión-temperatura del sensor, a fin de adaptarlo al rango de tensión requerido por el ADC. Por otro lado, hubo que diseñar el circuito encargado de controlar la velocidad de rotación del motor. Este circuito estará basado en un transistor MOSFET en conmutación, controlado mediante una señal PWM como se mencionó anteriormente. De esta manera, al variar el ciclo de trabajo de la señal PWM, variará de manera proporcional la tensión que cae en el motor, y por tanto su velocidad de rotación. En cuanto al diseño del software, se programó el microcontrolador para que generase una señal PWM en uno de sus pines en función del valor entregado por el ADC, a cuya entrada está conectada la tensión obtenida del circuito creado para adaptar la tensión generada por el sensor. Así mismo, se utiliza el microcontrolador para representar el valor de temperatura obtenido en una pantalla LCD. Para este proyecto se eligió una placa de desarrollo mbed, que incluye el microcontrolador integrado, debido a que facilita la tarea del prototipado. Posteriormente se procedió a la integración de ambas partes, y testeado del sistema para comprobar su correcto funcionamiento. Puesto que el resultado depende de la temperatura medida, fue necesario simular variaciones en ésta, para así comprobar los resultados obtenidos a distintas temperaturas. Para este propósito se empleó una bomba de aire caliente. Una vez comprobado el funcionamiento, como último paso se diseñó la placa de circuito impreso. Como conclusión, se consiguió desarrollar un sistema con un nivel de exactitud y precisión aceptable, en base a las limitaciones del sistema. SUMMARY: It is obvious that day by day people’s daily life depends more on technology and science. Tasks tend to be done automatically, making them simpler and as a result, user life is more comfortable. Every single task that can be controlled has an electronic system behind. In this project, a control system based on a microcontroller was designed for a fan, allowing it to go faster when temperature rises or slowing down as the environment gets colder. For this purpose, a microcontroller was programmed to generate a signal, to control the rotation speed of the fan depending on the data acquired from a temperature sensor. After testing the whole design developed in the laboratory, the next step taken was to build a prototype, which allows future improvements in the system that are discussed in the corresponding section of the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Desde los inicios de la codificación de vídeo digital hasta hoy, tanto la señal de video sin comprimir de entrada al codificador como la señal de salida descomprimida del decodificador, independientemente de su resolución, uso de submuestreo en los planos de diferencia de color, etc. han tenido siempre la característica común de utilizar 8 bits para representar cada una de las muestras. De la misma manera, los estándares de codificación de vídeo imponen trabajar internamente con estos 8 bits de precisión interna al realizar operaciones con las muestras cuando aún no se han transformado al dominio de la frecuencia. Sin embargo, el estándar H.264, en gran auge hoy en día, permite en algunos de sus perfiles orientados al mundo profesional codificar vídeo con más de 8 bits por muestra. Cuando se utilizan estos perfiles, las operaciones efectuadas sobre las muestras todavía sin transformar se realizan con la misma precisión que el número de bits del vídeo de entrada al codificador. Este aumento de precisión interna tiene el potencial de permitir unas predicciones más precisas, reduciendo el residuo a codificar y aumentando la eficiencia de codificación para una tasa binaria dada. El objetivo de este Proyecto Fin de Carrera es estudiar, utilizando las medidas de calidad visual objetiva PSNR (Peak Signal to Noise Ratio, relación señal ruido de pico) y SSIM (Structural Similarity, similaridad estructural), el efecto sobre la eficiencia de codificación y el rendimiento al trabajar con una cadena de codificación/descodificación H.264 de 10 bits en comparación con una cadena tradicional de 8 bits. Para ello se utiliza el codificador de código abierto x264, capaz de codificar video de 8 y 10 bits por muestra utilizando los perfiles High, High 10, High 4:2:2 y High 4:4:4 Predictive del estándar H.264. Debido a la ausencia de herramientas adecuadas para calcular las medidas PSNR y SSIM de vídeo con más de 8 bits por muestra y un tipo de submuestreo de planos de diferencia de color distinto al 4:2:0, como parte de este proyecto se desarrolla también una aplicación de análisis en lenguaje de programación C capaz de calcular dichas medidas a partir de dos archivos de vídeo sin comprimir en formato YUV o Y4M. ABSTRACT Since the beginning of digital video compression, the uncompressed video source used as input stream to the encoder and the uncompressed decoded output stream have both used 8 bits for representing each sample, independent of resolution, chroma subsampling scheme used, etc. In the same way, video coding standards force encoders to work internally with 8 bits of internal precision when working with samples before being transformed to the frequency domain. However, the H.264 standard allows coding video with more than 8 bits per sample in some of its professionally oriented profiles. When using these profiles, all work on samples still in the spatial domain is done with the same precision the input video has. This increase in internal precision has the potential of allowing more precise predictions, reducing the residual to be encoded, and thus increasing coding efficiency for a given bitrate. The goal of this Project is to study, using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural Similarity) objective video quality metrics, the effects on coding efficiency and performance caused by using an H.264 10 bit coding/decoding chain compared to a traditional 8 bit chain. In order to achieve this goal the open source x264 encoder is used, which allows encoding video with 8 and 10 bits per sample using the H.264 High, High 10, High 4:2:2 and High 4:4:4 Predictive profiles. Given that no proper tools exist for computing PSNR and SSIM values of video with more than 8 bits per sample and chroma subsampling schemes other than 4:2:0, an analysis application written in the C programming language is developed as part of this Project. This application is able to compute both metrics from two uncompressed video files in the YUV or Y4M format.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the Expectation Maximization algorithm (EM) applied to operational modal analysis of structures. The EM algorithm is a general-purpose method for maximum likelihood estimation (MLE) that in this work is used to estimate state space models. As it is well known, the MLE enjoys some optimal properties from a statistical point of view, which make it very attractive in practice. However, the EM algorithm has two main drawbacks: its slow convergence and the dependence of the solution on the initial values used. This paper proposes two different strategies to choose initial values for the EM algorithm when used for operational modal analysis: to begin with the parameters estimated by Stochastic Subspace Identification method (SSI) and to start using random points. The effectiveness of the proposed identification method has been evaluated through numerical simulation and measured vibration data in the context of a benchmark problem. Modal parameters (natural frequencies, damping ratios and mode shapes) of the benchmark structure have been estimated using SSI and the EM algorithm. On the whole, the results show that the application of the EM algorithm starting from the solution given by SSI is very useful to identify the vibration modes of a structure, discarding the spurious modes that appear in high order models and discovering other hidden modes. Similar results are obtained using random starting values, although this strategy allows us to analyze the solution of several starting points what overcome the dependence on the initial values used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The estimation of modal parameters of a structure from ambient measurements has attracted the attention of many researchers in the last years. The procedure is now well established and the use of state space models, stochastic system identification methods and stabilization diagrams allows to identify the modes of the structure. In this paper the contribution of each identified mode to the measured vibration is discussed. This modal contribution is computed using the Kalman filter and it is an indicator of the importance of the modes. Also the variation of the modal contribution with the order of the model is studied. This analysis suggests selecting the order for the state space model as the order that includes the modes with higher contribution. The order obtained using this method is compared to those obtained using other well known methods, like Akaike criteria for time series or the singular values of the weighted projection matrix in the Stochastic Subspace Identification method. Finally, both simulated and measured vibration data are used to show the practicability of the derived technique. Finally, it is important to remark that the method can be used with any identification method working in the state space model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanical response under compression of LiF single crystal micropillars oriented in the [111] direction was studied. Micropillars of different diameter (in the range 1–5 lm) were obtained by etching the matrix in directionally-solidified NaCl–LiF and KCl–LiF eutectic compounds. Selected micropillars were exposed to high-energy Ga+ ions to ascertain the effect of ion irradiation on the mechanical response. Ion irradiation led to an increase of approximately 30% in the yield strength and the maximum compressive strength but no effect of the micropillar diameter on flow stress was found in either the as-grown or the ion irradiated pillars. The dominant deformation micromechanisms were analyzed by means of crystal plasticity finite element simulations of the compression test, which explained the strong effect of micropillar misorientation on the mechanical response. Finally, the lack of size effect on the flow stress was discussed to the light of previous studies in LiF and other materials which show high lattice resistance to dislocation motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of crystal misorientation, geometrical tilt, and contact misalignment on the compression of highly anisotropic single crystal micropillars was assessed by means of crystal plasticity finite element simulations. The investigation was focused in single crystals with the NaCl structure, like MgO or LiF, which present a marked plastic anisotropy as a result of the large difference in the critical resolved shear stress between the “soft” {110}〈110〉 and the “hard” {100}〈110〉 active slip systems. It was found that contact misalignment led to a large reduction in the initial stiffness of the micropillar in crystals oriented in the soft and hard direction. The crystallographic tilt did not modify, however, the initial crystal stiffness. From the viewpoint of the plastic response, none of the effects analyzed led to significant differences in the flow stress when the single crystals were oriented along the “soft” [100] direction. Large differences were found, however, if the single crystal was oriented in the “hard” [111] direction as a result of the activation of the soft slip system. Numerical simulations were in very good agreement with experimental literature data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a quiet zone probing approach which deals with low dynamic range quiet zone acquisitions. Lack of dynamic range is a feature of millimeter and sub-millimeter wavelength technologies. It is consequence of the gradually smaller power generated by the instrumentation, that follows a f^α law with frequency, being α≥1 variable depending on the signal source’s technology. The proposed approach is based on an optimal data reduction scenario which redounds in a maximum signal to noise ratio increase for the signal pattern, with minimum information losses. After theoretical formulation, practical applications of the technique are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Result of impact and compression tests on Chojuro, Twentieth Century, Tsu Li, and Ya Li varieties of Asian pears indicate that Chojuro pears are the firmest and most resistant to mechanical damage. At the time of harvest, Tsu Li and Ya Li pears could resist mechanical damage nearly as well as Chojuro pears, but they become more susceptible to bruising in cold storage. Twentieth Century pears are most sensitive to impact and compression bruising. Increased time in the ripening room produces more softening and increased bruise resistance of Chojuro and Twentieth Century pears than of Tsu Li and Ya Li pears.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apple fruits, cv. Granny Smith, were subjected to mechanical impact and compression loads utilizing a steel rod with a spherical tip 19 mm diameter, 50.6 g mass. Energies applied were low enough to produce enzymatic reaction: 0.0120 J for impact, and 0.0199 J for compression. Bruised material was cut and examined with a transmission electron microscope. In both compression and impact, bruises showed a central region located in the flesh parenchyma, at a distance that approximately equalled the indentor tip radius. The parenchyma cells of this region were more altered than cells from the epidermis and hypodermis. Tissues under compression presented numerous deformed parenchyma cells with broken tonoplasts and tissue degradation as predicted by several investigators. The impacted cells supported different kinds of stresses than compressed cells, resulting in the formation of intensive vesiculation, either in the vacuole or in the middle lamella region between cell walls of adjacent cells. A large proportion of parenchyma cells completely split or had initiated splitting at the middle lamella. Bruising may develop with or without cell rupture. Therefore, cell wall rupture is not essential for the development of a bruise, at least the smallest one, as predicted previously

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel compression scheme is proposed, in which hollow targets with specifically curved structures initially filled with uniform matter, are driven by converging shock waves. The self-similar dynamics is analyzed for converging and diverging shock waves. The shock-compressed densities and pressures are much higher than those achieved using spherical shocks due to the geometric accumulation. Dynamic behavior is demonstrated using two-dimensional hydrodynamic simulations. The linear stability analysis for the spherical geometry reveals a new dispersion relation with cut-off mode numbers as a function of the specific heat ratio, above which eigenmode perturbations are smeared out in the converging phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear synchronously along the lumbo-sacral segments. These CDPs have different shapes and magnitudes. Previous work has indicated that some CDPs appear to be specially associated with the activation of spinal pathways that lead to primary afferent depolarization and presynaptic inhibition. Visual detection and classification of these CDPs provides relevant information on the functional organization of the neural networks involved in the control of sensory information and allows the characterization of the changes produced by acute nerve and spinal lesions. We now present a novel feature extraction approach for signal classification, applied to CDP detection. The method is based on an intuitive procedure. We first remove by convolution the noise from the CDPs recorded in each given spinal segment. Then, we assign a coefficient for each main local maximum of the signal using its amplitude and distance to the most important maximum of the signal. These coefficients will be the input for the subsequent classification algorithm. In particular, we employ gradient boosting classification trees. This combination of approaches allows a faster and more accurate discrimination of CDPs than is obtained by other methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heterotrimeric G-protein complex provides signal amplification and target specificity. The Arabidopsis (Arabidopsis thaliana) G?-subunit of this complex (AGB1) interacts with and modulates the activity of target cytoplasmic proteins. This specificity resides in the structure of the interface between AGB1 and its targets. Important surface residues of AGB1, which were deduced from a comparative evolutionary approach, were mutated to dissect AGB1-dependent physiological functions. Analysis of the capacity of these mutants to complement well-established phenotypes of G?-null mutants revealed AGB1 residues critical for specific AGB1-mediated biological processes, including growth architecture, pathogen resistance, stomata-mediated leaf-air gas exchange, and possibly photosynthesis. These findings provide promising new avenues to direct the finely tuned engineering of crop yield and traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A system for estimation of unknown rectangular room dimensions based on two radio transceivers, both capable of full duplex operations, is presented. The approach is based on CIR measurements taken at the same place where the signal is transmitted (generated), commonly known as self- to-self CIR. Another novelty is the receiver antenna design which consists of eight sectorized antennas with 45° aperture in the horizontal plane, whose total coverage corresponds to the isotropic one. The dimensions of a rectangular room are reconstructed directly from radio impulse responses by extracting the information regarding features like round trip time, received signal strength and reverberation time. Using radar approach the estimation of walls and corners positions are derived. Additionally, the analysis of the absorption coefficient of the test environment is conducted and a typical coefficient for office room with furniture is proposed. Its accuracy is confirmed through the results of volume estimation. Tests using measured data were performed, and the simulation results confirm the feasibility of the approach.