878 resultados para Signal propagation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-frequency seismograms contain features that reflect the random inhomogeneities of the earth. In this work I use an imaging method to locate the high contrast small- scale heterogeneity respect to the background earth medium. This method was first introduced by Nishigami (1991) and than applied to different volcanic and tectonically active areas (Nishigami, 1997, Nishigami, 2000, Nishigami, 2006). The scattering imaging method is applied to two volcanic areas: Campi Flegrei and Mt. Vesuvius. Volcanic and seismological active areas are often characterized by complex velocity structures, due to the presence of rocks with different elastic properties. I introduce some modifications to the original method in order to make it suitable for small and highly complex media. In particular, for very complex media the single scattering approximation assumed by Nishigami (1991) is not applicable as the mean free path becomes short. The multiple scattering or diffusive approximation become closer to the reality. In this thesis, differently from the ordinary Nishigami’s method (Nishigami, 1991), I use the mean of the recorded coda envelope as reference curve and calculate the variations from this average envelope. In this way I implicitly do not assume any particular scattering regime for the "average" scattered radiation, whereas I consider the variations as due to waves that are singularly scattered from the strongest heterogeneities. The imaging method is applied to a relatively small area (20 x 20 km), this choice being justified by the small length of the analyzed codas of the low magnitude earthquakes. I apply the unmodified Nishigami’s method to the volcanic area of Campi Flegrei and compare the results with the other tomographies done in the same area. The scattering images, obtained with frequency waves around 18 Hz, show the presence of high scatterers in correspondence with the submerged caldera rim in the southern part of the Pozzuoli bay. Strong scattering is also found below the Solfatara crater, characterized by the presence of densely fractured, fluid-filled rocks and by a strong thermal anomaly. The modified Nishigami’s technique is applied to the Mt. Vesuvius area. Results show a low scattering area just below the central cone and a high scattering area around it. The high scattering zone seems to be due to the contrast between the high rigidity body located beneath the crater and the low rigidity materials located around it. The central low scattering area overlaps the hydrothermal reservoirs located below the central cone. An interpretation of the results in terms of geological properties of the medium is also supplied, aiming to find a correspondence of the scattering properties and the geological nature of the material. A complementary result reported in this thesis is that the strong heterogeneity of the volcanic medium create a phenomenon called "coda localization". It has been verified that the shape of the seismograms recorded from the stations located at the top of the volcanic edifice of Mt. Vesuvius is different from the shape of the seismograms recorded at the bottom. This behavior is justified by the consideration that the coda energy is not uniformly distributed within a region surrounding the source for great lapse time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machines with moving parts give rise to vibrations and consequently noise. The setting up and the status of each machine yield to a peculiar vibration signature. Therefore, a change in the vibration signature, due to a change in the machine state, can be used to detect incipient defects before they become critical. This is the goal of condition monitoring, in which the informations obtained from a machine signature are used in order to detect faults at an early stage. There are a large number of signal processing techniques that can be used in order to extract interesting information from a measured vibration signal. This study seeks to detect rotating machine defects using a range of techniques including synchronous time averaging, Hilbert transform-based demodulation, continuous wavelet transform, Wigner-Ville distribution and spectral correlation density function. The detection and the diagnostic capability of these techniques are discussed and compared on the basis of experimental results concerning gear tooth faults, i.e. fatigue crack at the tooth root and tooth spalls of different sizes, as well as assembly faults in diesel engine. Moreover, the sensitivity to fault severity is assessed by the application of these signal processing techniques to gear tooth faults of different sizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological processes are very complex mechanisms, most of them being accompanied by or manifested as signals that reflect their essential characteristics and qualities. The development of diagnostic techniques based on signal and image acquisition from the human body is commonly retained as one of the propelling factors in the advancements in medicine and biosciences recorded in the recent past. It is a fact that the instruments used for biological signal and image recording, like any other acquisition system, are affected by non-idealities which, by different degrees, negatively impact on the accuracy of the recording. This work discusses how it is possible to attenuate, and ideally to remove, these effects, with a particular attention toward ultrasound imaging and extracellular recordings. Original algorithms developed during the Ph.D. research activity will be examined and compared to ones in literature tackling the same problems; results will be drawn on the base of comparative tests on both synthetic and in-vivo acquisitions, evaluating standard metrics in the respective field of application. All the developed algorithms share an adaptive approach to signal analysis, meaning that their behavior is not dependent only on designer choices, but driven by input signal characteristics too. Performance comparisons following the state of the art concerning image quality assessment, contrast gain estimation and resolution gain quantification as well as visual inspection highlighted very good results featured by the proposed ultrasound image deconvolution and restoring algorithms: axial resolution up to 5 times better than algorithms in literature are possible. Concerning extracellular recordings, the results of the proposed denoising technique compared to other signal processing algorithms pointed out an improvement of the state of the art of almost 4 dB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical modelling and statistical learning theory are two powerful analytical frameworks for analyzing signals and developing efficient processing and classification algorithms. In this thesis, these frameworks are applied for modelling and processing biomedical signals in two different contexts: ultrasound medical imaging systems and primate neural activity analysis and modelling. In the context of ultrasound medical imaging, two main applications are explored: deconvolution of signals measured from a ultrasonic transducer and automatic image segmentation and classification of prostate ultrasound scans. In the former application a stochastic model of the radio frequency signal measured from a ultrasonic transducer is derived. This model is then employed for developing in a statistical framework a regularized deconvolution procedure, for enhancing signal resolution. In the latter application, different statistical models are used to characterize images of prostate tissues, extracting different features. These features are then uses to segment the images in region of interests by means of an automatic procedure based on a statistical model of the extracted features. Finally, machine learning techniques are used for automatic classification of the different region of interests. In the context of neural activity signals, an example of bio-inspired dynamical network was developed to help in studies of motor-related processes in the brain of primate monkeys. The presented model aims to mimic the abstract functionality of a cell population in 7a parietal region of primate monkeys, during the execution of learned behavioural tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work of my thesis is focused on the impact of tsunami waves in limited basins. By limited basins I mean here those basins capable of modifying significantly the tsunami signal with respect to the surrounding open sea. Based on this definition, we consider limited basins not only harbours but also straits, channels, seamounts and oceanic shelves. I have considered two different examples, one dealing with the Seychelles Island platform in the Indian Ocean, the second focussing on the Messina Strait and the harbour of the Messina city itself (Italy). The Seychelles platform is differentiated at bathymetric level from the surrounding ocean, with rapid changes from 2 km to 70 meters over short horizontal distances. The study of the platform response to the tsunami propagation is based on the simulation of the mega-event occurred on 26 December 2004. Based on a hypothesis for the earthquake causative fault, the ensuing tsunami has been numerically simulated. I analysed synthetic tide gauge records at several virtual tide gauges aligned along the direction going from the source to the platform. A substantial uniformity of tsunami signals in all calculated open ocean tide-gauge records is observed, while the signals calculated in two points of the Seychelles platform show different features both in terms of amplitude and period of the perturbation. To better understand the content in frequency of different calculated marigrams, a spectral analysis was carried out. In particular the ratio between the calculated tide-gauge records spectrum on the platform and the average tide-gauge records in the open ocean was considered. The main result is that, while in the average spectrum in the open ocean the fundamental peak is related to the source, the platform introduces further peaks linked both to the bathymetric configuration and to coastal geometry. The Messina Strait represents an interesting case because it consists in a sort of a channel open both in the north and in the south and furthermore contains the limited basin of the Messina harbour. In this case the study has been carried out in a different way with respect to the Seychelles case. The basin was forced along a boundary of the computational domain with sinusoidal functions having different periods within the typical tsunami frequencies. The tsunami has been simulated numerically and in particular the tide-gauge records were calculated for every forcing function in different points both externally and internally of the channel and of the Messina harbour. Apart from the tide-gauge records in the source region that almost immediately reach stationarity, all the computed signals in the channel and in the Messina harbour present a transient variable amplitude followed by a stationary part. Based exclusively on this last part, I calculated the amplification curves for each site. I found that the maximum amplification is obtained for forcing periods of approximately 10 minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal infrared (IR, 10.5 – 12.5 m) images from the Meteosat Visible and Infrared Imager (MVIRI) of cold cloud episodes (cloud top brightness temperature < 241 K) are used as a proxy of precipitating clouds to derive a warm season (May-August) climatology of their coherency, duration, span, and speed over Europe and the Mediterranean. The analysis focuses over the 30°-54°N, 15°W-40°E domain in May-August 1996-2005. Harmonic analysis using discrete Fourier transforms is applied together with a statistical analysis and an investigation of the diurnal cycle. This study has the objective to make available a set of results on the propagation dynamics of the cloud systems with the aim of assist numerical modellers in improving summer convection parameterization. The zonal propagation of cold cloud systems is accompanied by a weak meridional component confined to narrow latitude belts. The persistence of cold clouds over the area evidences the role of orography, the Pyrenees, the Alps, the Balkans and Anatolia. A diurnal oscillation is found with a maximum marking the initiation of convection in the lee of the mountains and shifting from about 1400 UTC at 40°E to 1800 UTC at 0°. A moderate eastward propagation of the frequency maximum from all mountain chains across the domain exists and the diurnal maxima are completely suppressed west of 5°W. The mean power spectrum of the cold cloud frequency distribution evidences a period of one day all over Europe disappearing over the ocean (west of 10°W). Other maxima are found in correspondence of 6 to 10 days in the longitudes from 15° W to 0° and indicate the activity of the westerlies with frontal passage over the continent. Longer periods activities (from 15 up to 30 days) were stronger around 10° W and from 5° W to 15° E and are likely related to the Madden Julian Oscillation influence. The maxima of the diurnal signal are in phase with the presence of elevated terrain and with land masses. A median zonal phase speed of 16.1 ms-1 is found for all events ≥ 1000 km and ≥ 20 h and a full set of results divided by years and recurrence categories is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Der AMANDA-II Detektor ist primär für den richtungsaufgelösten Nachweis hochenergetischer Neutrinos konzipiert. Trotzdem können auch niederenergetische Neutrinoausbrüche, wie sie von Supernovae erwartet werden, mit hoher Signifikanz nachgewiesen werden, sofern sie innerhalb der Milchstraße stattfinden. Die experimentelle Signatur im Detektor ist ein kollektiver Anstieg der Rauschraten aller optischen Module. Zur Abschätzung der Stärke des erwarteten Signals wurden theoretische Modelle und Simulationen zu Supernovae und experimentelle Daten der Supernova SN1987A studiert. Außerdem wurden die Sensitivitäten der optischen Module neu bestimmt. Dazu mussten für den Fall des südpolaren Eises die Energieverluste geladener Teilchen untersucht und eine Simulation der Propagation von Photonen entwickelt werden. Schließlich konnte das im Kamiokande-II Detektor gemessene Signal auf die Verhältnisse des AMANDA-II Detektors skaliert werden. Im Rahmen dieser Arbeit wurde ein Algorithmus zur Echtzeit-Suche nach Signalen von Supernovae als Teilmodul der Datennahme implementiert. Dieser beinhaltet diverse Verbesserungen gegenüber der zuvor von der AMANDA-Kollaboration verwendeten Version. Aufgrund einer Optimierung auf Rechengeschwindigkeit können nun mehrere Echtzeit-Suchen mit verschiedenen Analyse-Zeitbasen im Rahmen der Datennahme simultan laufen. Die Disqualifikation optischer Module mit ungeeignetem Verhalten geschieht in Echtzeit. Allerdings muss das Verhalten der Module zu diesem Zweck anhand von gepufferten Daten beurteilt werden. Dadurch kann die Analyse der Daten der qualifizierten Module nicht ohne eine Verzögerung von etwa 5 Minuten geschehen. Im Falle einer erkannten Supernova werden die Daten für die Zeitdauer mehrerer Minuten zur späteren Auswertung in 10 Millisekunden-Intervallen archiviert. Da die Daten des Rauschverhaltens der optischen Module ansonsten in Intervallen von 500 ms zur Verfgung stehen, ist die Zeitbasis der Analyse in Einheiten von 500 ms frei wählbar. Im Rahmen dieser Arbeit wurden drei Analysen dieser Art am Südpol aktiviert: Eine mit der Zeitbasis der Datennahme von 500 ms, eine mit der Zeitbasis 4 s und eine mit der Zeitbasis 10 s. Dadurch wird die Sensitivität für Signale maximiert, die eine charakteristische exponentielle Zerfallszeit von 3 s aufweisen und gleichzeitig eine gute Sensitivität über einen weiten Bereich exponentieller Zerfallszeiten gewahrt. Anhand von Daten der Jahre 2000 bis 2003 wurden diese Analysen ausführlich untersucht. Während die Ergebnisse der Analyse mit t = 500 ms nicht vollständig nachvollziehbare Ergebnisse produzierte, konnten die Resultate der beiden Analysen mit den längeren Zeitbasen durch Simulationen reproduziert und entsprechend gut verstanden werden. Auf der Grundlage der gemessenen Daten wurden die erwarteten Signale von Supernovae simuliert. Aus einem Vergleich zwischen dieser Simulation den gemessenen Daten der Jahre 2000 bis 2003 und der Simulation des erwarteten statistischen Untergrunds kann mit einem Konfidenz-Niveau von mindestens 90 % gefolgert werden, dass in der Milchstraße nicht mehr als 3.2 Supernovae pro Jahr stattfinden. Zur Identifikation einer Supernova wird ein Ratenanstieg mit einer Signifikanz von mindestens 7.4 Standardabweichungen verlangt. Die Anzahl erwarteter Ereignisse aus dem statistischen Untergrund beträgt auf diesem Niveau weniger als ein Millionstel. Dennoch wurde ein solches Ereignis gemessen. Mit der gewählten Signifikanzschwelle werden 74 % aller möglichen Vorläufer-Sterne von Supernovae in der Galaxis überwacht. In Kombination mit dem letzten von der AMANDA-Kollaboration veröffentlicheten Ergebnis ergibt sich sogar eine obere Grenze von nur 2.6 Supernovae pro Jahr. Im Rahmen der Echtzeit-Analyse wird für die kollektive Ratenüberhöhung eine Signifikanz von mindestens 5.5 Standardabweichungen verlangt, bevor eine Meldung über die Detektion eines Supernova-Kandidaten verschickt wird. Damit liegt der überwachte Anteil Sterne der Galaxis bei 81 %, aber auch die Frequenz falscher Alarme steigt auf bei etwa 2 Ereignissen pro Woche. Die Alarm-Meldungen werden über ein Iridium-Modem in die nördliche Hemisphäre übertragen, und sollen schon bald zu SNEWS beitragen, dem weltweiten Netzwerk zur Früherkennung von Supernovae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Array seismology is an useful tool to perform a detailed investigation of the Earth’s interior. Seismic arrays by using the coherence properties of the wavefield are able to extract directivity information and to increase the ratio of the coherent signal amplitude relative to the amplitude of incoherent noise. The Double Beam Method (DBM), developed by Krüger et al. (1993, 1996), is one of the possible applications to perform a refined seismic investigation of the crust and mantle by using seismic arrays. The DBM is based on a combination of source and receiver arrays leading to a further improvement of the signal-to-noise ratio by reducing the error in the location of coherent phases. Previous DBM works have been performed for mantle and core/mantle resolution (Krüger et al., 1993; Scherbaum et al., 1997; Krüger et al., 2001). An implementation of the DBM has been presented at 2D large-scale (Italian data-set for Mw=9.3, Sumatra earthquake) and at 3D crustal-scale as proposed by Rietbrock & Scherbaum (1999), by applying the revised version of Source Scanning Algorithm (SSA; Kao & Shan, 2004). In the 2D application, the rupture front propagation in time has been computed. In 3D application, the study area (20x20x33 km3), the data-set and the source-receiver configurations are related to the KTB-1994 seismic experiment (Jost et al., 1998). We used 60 short-period seismic stations (200-Hz sampling rate, 1-Hz sensors) arranged in 9 small arrays deployed in 2 concentric rings about 1 km (A-arrays) and 5 km (B-array) radius. The coherence values of the scattering points have been computed in the crustal volume, for a finite time-window along all array stations given the hypothesized origin time and source location. The resulting images can be seen as a (relative) joint log-likelihood of any point in the subsurface that have contributed to the full set of observed seismograms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis explores the capabilities of heterogeneous multi-core systems, based on multiple Graphics Processing Units (GPUs) in a standard desktop framework. Multi-GPU accelerated desk side computers are an appealing alternative to other high performance computing (HPC) systems: being composed of commodity hardware components fabricated in large quantities, their price-performance ratio is unparalleled in the world of high performance computing. Essentially bringing “supercomputing to the masses”, this opens up new possibilities for application fields where investing in HPC resources had been considered unfeasible before. One of these is the field of bioelectrical imaging, a class of medical imaging technologies that occupy a low-cost niche next to million-dollar systems like functional Magnetic Resonance Imaging (fMRI). In the scope of this work, several computational challenges encountered in bioelectrical imaging are tackled with this new kind of computing resource, striving to help these methods approach their true potential. Specifically, the following main contributions were made: Firstly, a novel dual-GPU implementation of parallel triangular matrix inversion (TMI) is presented, addressing an crucial kernel in computation of multi-mesh head models of encephalographic (EEG) source localization. This includes not only a highly efficient implementation of the routine itself achieving excellent speedups versus an optimized CPU implementation, but also a novel GPU-friendly compressed storage scheme for triangular matrices. Secondly, a scalable multi-GPU solver for non-hermitian linear systems was implemented. It is integrated into a simulation environment for electrical impedance tomography (EIT) that requires frequent solution of complex systems with millions of unknowns, a task that this solution can perform within seconds. In terms of computational throughput, it outperforms not only an highly optimized multi-CPU reference, but related GPU-based work as well. Finally, a GPU-accelerated graphical EEG real-time source localization software was implemented. Thanks to acceleration, it can meet real-time requirements in unpreceeded anatomical detail running more complex localization algorithms. Additionally, a novel implementation to extract anatomical priors from static Magnetic Resonance (MR) scansions has been included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleic acid biosensors represent a powerful tool for clinical and environmental pathogens detection. For applications such as point-of-care biosensing, it is fundamental to develop sensors that should be automatic, inexpensive, portable and require a professional skill of the user that should be as low as possible. With the goal of determining the presence of pathogens when present in very small amount, such as for the screening of pathogens in drinking water, an amplification step must be implemented. Often this type of determinations should be performed with simple, automatic and inexpensive hardware: the use of a chemical (or nanotechnological) isothermal solution would be desirable. My Ph.D. project focused on the study and on the testing of four isothermal reactions which can be used to amplify the nucleic acid analyte before the binding event on the surface sensor or to amplify the signal after that the hybridization event with the probe. Recombinase polymerase amplification (RPA) and ligation-mediated rolling circle amplification (L-RCA) were investigated as methods for DNA and RNA amplification. Hybridization chain reaction (HCR) and Terminal deoxynucleotidil transferase-mediated amplification were investigated as strategies to achieve the enhancement of the signal after the surface hybridization event between target and probe. In conclusion, it can be said that only a small subset of the biochemical strategies that are proved to work in solution towards the amplification of nucleic acids does truly work in the context of amplifying the signal of a detection system for pathogens. Amongst those tested during my Ph.D. activity, recombinase polymerase amplification seems the best candidate for a useful implementation in diagnostic or environmental applications.