866 resultados para Short-term Forecasting
Resumo:
In the field of motor control, two hypotheses have been controversial: whether the brain acquires internal models that generate accurate motor commands, or whether the brain avoids this by using the viscoelasticity of musculoskeletal system. Recent observations on relatively low stiffness during trained movements support the existence of internal models. However, no study has revealed the decrease in viscoelasticity associated with learning that would imply improvement of internal models as well as synergy between the two hypothetical mechanisms. Previously observed decreases in electromyogram (EMG) might have other explanations, such as trajectory modifications that reduce joint torques. To circumvent such complications, we required strict trajectory control and examined only successful trials having identical trajectory and torque profiles. Subjects were asked to perform a hand movement in unison with a target moving along a specified and unusual trajectory, with shoulder and elbow in the horizontal plane at the shoulder level. To evaluate joint viscoelasticity during the learning of this movement, we proposed an index of muscle co-contraction around the joint (IMCJ). The IMCJ was defined as the summation of the absolute values of antagonistic muscle torques around the joint and computed from the linear relation between surface EMG and joint torque. The IMCJ during isometric contraction, as well as during movements, was confirmed to correlate well with joint stiffness estimated using the conventional method, i.e., applying mechanical perturbations. Accordingly, the IMCJ during the learning of the movement was computed for each joint of each trial using estimated EMG-torque relationship. At the same time, the performance error for each trial was specified as the root mean square of the distance between the target and hand at each time step over the entire trajectory. The time-series data of IMCJ and performance error were decomposed into long-term components that showed decreases in IMCJ in accordance with learning with little change in the trajectory and short-term interactions between the IMCJ and performance error. A cross-correlation analysis and impulse responses both suggested that higher IMCJs follow poor performances, and lower IMCJs follow good performances within a few successive trials. Our results support the hypothesis that viscoelasticity contributes more when internal models are inaccurate, while internal models contribute more after the completion of learning. It is demonstrated that the CNS regulates viscoelasticity on a short- and long-term basis depending on performance error and finally acquires smooth and accurate movements while maintaining stability during the entire learning process.
Resumo:
The demand for sustainable development has resulted in a rapid growth in wind power worldwide. Despite various approaches have been proposed to improve the accuracy and to overcome the uncertainties associated with traditional methods, the stochastic and variable nature of wind still remains the most challenging issue in accurately forecasting wind power. This paper presents a hybrid deterministic-probabilistic method where a temporally local ‘moving window’ technique is used in Gaussian Process to examine estimated forecasting errors. This temporally local Gaussian Process employs less measurement data while faster and better predicts wind power at two wind farms, one in the USA and the other in Ireland. Statistical analysis on the results shows that the method can substantially reduce the forecasting error while more likely generate Gaussian-distributed residuals, particularly for short-term forecast horizons due to its capability to handle the time-varying characteristics of wind power.
Resumo:
Due to the variability of wind power, it is imperative to accurately and timely forecast the wind generation to enhance the flexibility and reliability of the operation and control of real-time power. Special events such as ramps, spikes are hard to predict with traditional methods using solely recently measured data. In this paper, a new Gaussian Process model with hybrid training data taken from both the local time and historic dataset is proposed and applied to make short-term predictions from 10 minutes to one hour ahead. A key idea is that the similar pattern data in history are properly selected and embedded in Gaussian Process model to make predictions. The results of the proposed algorithms are compared to those of standard Gaussian Process model and the persistence model. It is shown that the proposed method not only reduces magnitude error but also phase error.
Resumo:
In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.
Resumo:
In an economy where cash can be stored costlessly (in nominal terms), the nominal interest rate is bounded below by zero. This paper derives the implications of this nonnegativity constraint for the term structure and shows that it induces a nonlinear and convex relation between short- and long-term interest rates. As a result, the long-term rate responds asymmetrically to changes in the short-term rate, and by less than predicted by a benchmark linear model. In particular, a decrease in the short-term rate leads to a decrease in the long-term rate that is smaller in magnitude than the increase in the long-term rate associated with an increase in the short-term rate of the same size. Up to the extent that monetary policy acts by affecting long-term rates through the term structure, its power is considerably reduced at low interest rates. The empirical predictions of the model are examined using data from Japan.
Resumo:
Background: Postnatal depression is associated with adverse child cognitive and socio-emotional outcome. It is not known whether psychological treatment affects the quality of the mother-child relationship and child outcome. Aims: To evaluate the effect of three psychological treatments on the mother-child relationship and child outcome. Method: Women with post-partum depression (n=193) were assigned randomly to routine primary care, non-directive counselling, cognitive-behavioural therapy or psychodynamic therapy The women and their children, were assessed at 43, [8 and 60 months post-partum. Results: Indications of a positive benefit were limited. All three treatments had a significant benefit on maternal reports of early difficulties in relationships with the infants, counselling gave better infant emotional and behaviour ratings at 18 months and more sensitive early mother-infant interactions. The treatments had no significant impact on maternal management of early infant behaviour problems, security of infant-mother attachment. Infant cognitive development or any child outcome at 5 years. Conclusions: Early intervention was of short-term benefit to the mother-child relationship and infant behaviour problems. More-prolonged intervention may be needed. Health visitors could deliver this.
Resumo:
Background: Psychological interventions for postnatal depression can be beneficial in the short term but their longer-term impact is unknown, Aims To evaluate the long-term effect on maternal mood of three psychological treatments in relation to routine primary care. Method: Women with post-partum depression (n=193)were assigned randomly to one of four conditions: routine primary care, non-directive counselling, cognitive-behavioural therapy or psychodynamic therapy. They were assessed immediately after the treatment phase (at 4.5 months) and at 18 and 60 months post-partum. Results: Compared with the control, ail three treatments had a significant impact at 4.5 months on maternal mood (Edinburgh Postnatal Depression Scale, EPDS). Only psychodynamic therapy produced a rate of reduction in depression (Structured Clinical interview for DSM III-R) significantly superior to that of the control. The benefit of treatment was no longer apparent by 9 months postpartum, treatment did not reduce subsequent episodes of post-partum depression. Conclusions: Psychological intervention for post-partum depression improves maternal mood (EPDS) in the short term. However, this benefit is not superior to spontaneous remission in the long term.
Resumo:
This paper examines the predictability of real estate asset returns using a number of time series techniques. A vector autoregressive model, which incorporates financial spreads, is able to improve upon the out of sample forecasting performance of univariate time series models at a short forecasting horizon. However, as the forecasting horizon increases, the explanatory power of such models is reduced, so that returns on real estate assets are best forecast using the long term mean of the series. In the case of indirect property returns, such short-term forecasts can be turned into a trading rule that can generate excess returns over a buy-and-hold strategy gross of transactions costs, although none of the trading rules developed could cover the associated transactions costs. It is therefore concluded that such forecastability is entirely consistent with stock market efficiency.
Resumo:
We evaluate the forecasting performance of a number of systems models of US shortand long-term interest rates. Non-linearities, induding asymmetries in the adjustment to equilibrium, are shown to result in more accurate short horizon forecasts. We find that both long and short rates respond to disequilibria in the spread in certain circumstances, which would not be evident from linear representations or from single-equation analyses of the short-term interest rate.
Resumo:
The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.
Resumo:
In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.
Resumo:
Aberrant crypt foci (ACF) in the colon of carcinogen-treated rodents are considered to be the earliest hallmark of colon carcinogenesis. In the present study the relationship between a short-term (4 weeks) and medium-term (30 weeks) assay was assessed in a model of colon carcinogenesis induced by dimethylhydrazine (DMH) in the rat. Six-week-old male Wistar rats were given subcutaneous injections of DMH (40 mg/kg) twice a week for 2 weeks and killed at the end of the 4th or 30th week. ACF were scored for number, distribution pattern along the colon and crypt multiplicity in 0.1% methylene-blue whole-mount preparations. ACF were distinguished from normal crypts by their larger size and elliptical shape. The incidence, distribution and morphology of colon tumors were recorded. The majority of ACF were present in the middle and distal colon of DMH-treated rats and their number increased with time. By the 4th week, 91.5% ACF were composed of one or two crypts and 8.5% had three or more crypts, while by the 30th week 46.9% ACF had three or more crypts. Thus, a progression of ACF consisting of multiple crypts was observed from the 4th to the 30th week. Nine well-differentiated adenocarcinomas were found in 10 rats by the 30th week. Seven tumors were located in the distal colon and two in the middle colon. No tumor was found in the proximal colon. The present data indicate that induction of ACF by DMH in the short-term (4 weeks) assay was correlated with development of well-differentiated adenocarcinomas in the medium-term (30 weeks) assay.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
According to the working memory model, the phonological loop is the component of working memory specialized in processing and manipulating limited amounts of speech-based information. The Children's Test of Nonword Repetition (CNRep) is a suitable measure of phonological short-term memory for English-speaking children, which was validated by the Brazilian Children's Test of Pseudoword Repetition (BCPR) as a Portuguese-language version. The objectives of the present study were: i) to investigate developmental aspects of the phonological memory processing by error analysis in the nonword repetition task, and ii) to examine phoneme (substitution, omission and addition) and order (migration) errors made in the BCPR by 180 normal Brazilian children of both sexes aged 4-10, from preschool to 4th grade. The dominant error was substitution [F(3,525) = 180.47; P < 0.0001]. The performance was age-related [F(4,175) = 14.53; P < 0.0001]. The length effect, i.e., more errors in long than in short items, was observed [F(3,519) = 108.36; P < 0.0001]. In 5-syllable pseudowords, errors occurred mainly in the middle of the stimuli, before the syllabic stress [F(4,16) = 6.03; P = 0.003]; substitutions appeared more at the end of the stimuli, after the stress [F(12,48) = 2.27; P = 0.02]. In conclusion, the BCPR error analysis supports the idea that phonological loop capacity is relatively constant during development, although school learning increases the efficiency of this system. Moreover, there are indications that long-term memory contributes to holding memory trace. The findings were discussed in terms of distinctiveness, clustering and redintegration hypotheses.
Resumo:
[EN] Background: Spain has gone from a surplus to a shortage of medical doctors in very few years. Medium and long-term planning for health professionals has become a high priority for health authorities. Methods: We created a supply and demand/need simulation model for 43 medical specialties using system dynamics. The model includes demographic, education and labour market variables. Several scenarios were defined. Variables controllable by health planners can be set as parameters to simulate different scenarios. The model calculates the supply and the deficit or surplus. Experts set the ratio of specialists needed per 1000 inhabitants with a Delphi method. Results: In the scenario of the baseline model with moderate population growth, the deficit of medical specialists will grow from 2% at present (2800 specialists) to 14.3% in 2025 (almost 21 000). The specialties with the greatest medium-term shortages are Anesthesiology, Orthopedic and Traumatic Surgery, Pediatric Surgery, Plastic Aesthetic and Reparatory Surgery, Family and Community Medicine, Pediatrics, Radiology, and Urology. Conclusions: The model suggests the need to increase the number of students admitted to medical school. Training itineraries should be redesigned to facilitate mobility among specialties. In the meantime, the need to make more flexible the supply in the short term is being filled by the immigration of physicians from new members of the European Union and from Latin America.