992 resultados para Shear strength of soils.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study on the postliquefaction undrained shear behavior of sand-silt mixtures at constant void ratios is presented in this article. The influence of different parameters such as density, amplitude of cyclic shear stress, and drainage conditions on the postliquefaction undrained response of sand-silt mixtures has been investigated, in addition to the effect of fines content. The results showed that the limiting silt content plays a vital role in the strength of the soil under both cyclic and monotonic shear loading. Both the liquefaction resistance and postliquefaction shear strength of the soils are found to decrease with an increase in the fines content until the limiting silt content is reached. However, further increase in the silt content beyond the limiting silt content increases the liquefaction resistance as well as the postliquefaction shear strength of the soils. It is also observed that these variations on the liquefaction and postliquefaction resistance of soils are closely related to the variations in relative density. (C) 2013 American Society of Civil Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32-34 times that at the liquid limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32–34 times that at the liquid limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m(3) to 10.3 kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8 degrees to 33 degrees corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8 degrees to 55 degrees in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper addresses the quality of the interface and edge bonded joints in layers of cross-laminated timber (CLT) panels. The shear performance was studied to assess the suitability of two different adhesives, Polyurethane (PUR) and Phenol-Resorcinol-Formaldehyde (PRF), and to determine the optimum clamping pressure. Since there is no established testing procedure to determine the shear strength of the surface bonds between layers in a CLT panel, block shear tests of specimens in two different configurations were carried out, and further shear tests of edge bonded specimen in two configurations were performed. Delamination tests were performed on samples which were subjected to accelerated aging to assess the durability of bonds in severe environmental conditions. Both tested adhesives produced boards with shear strength values within the edge bonding requirements of prEN 16351 for all manufacturing pressures. While the PUR specimens had higher shear strength values, the PRF specimens demonstrated superior durability characteristics in the delamination tests. It seems that the test protocol introduced in this study for crosslam bonded specimens, cut from a CLT panel, and placed in the shearing tool horizontally, accurately reflects the shearing strength of glue lines in CLT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Based on the importance of the integrity of the metal/ceramic interface, the purpose of this work was to evaluate the shear bond strength of the metal-ceramic union of two Co-Cr alloys (Wirobond C, Bego; Remanium 2000, Dentaurum) combined with Omega 900 ceramic (Vita Zahnfabrik). Material and Method: Eleven cylindrical matrixes were made for each alloy, and the metallic portion was obtained with the lost wax casting technique with standardized waxing of 4mm of height and of 4mm of diameter. The ceramic was applied according to the manufacturer's recommendations with the aid of a teflon matrix that allowed its dimension to be standardized in the same size as the metallic portion. The specimens were submitted to the shear bond test in an universal testing machine (EMIC), with the aid of a device developed for such intention, and constant speed of 0.5mm/min. Results and Conclusions: The mean resistance was 48.387MPa for Wirobond C alloy, with standard deviation of 17.718, and 55.956MPa for Remanium 2000, with standard deviation of 17.198. No statistically significant difference was observed between the shear strength of the two metal-ceramic alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contributions of the concrete slab and composite action to the vertical shear strength of continuous steel-concrete composite beams are ignored in current design codes, which result in conservative designs. This paper investigates the ultimate strength of continuous composite beams in combined bending and shear by using the finite element analysis method. A three-dimensional finite element model has been developed to account for the geometric and material nonlinear behaviour of continuous composite beams. The finite element model is verified by experimental results and then used to study the effects of the concrete slab and shear connection on the vertical shear strength. The moment-shear interaction strength of continuous composite beams is also investigated by varying the moment/ shear ratio. It is shown that the concrete slab and composite action significantly increase the ultimate strength of continuous composite beams. Based on numerical results, design models are proposed for the vertical shear strength and moment-shear interaction of continuous composite beams. The proposed design models, which incorporates the effects of the concrete slab, composite action, stud pullout failure and web shear buckling, are compared with experimental results with good agreement. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of experimental studies on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB). The LSB section has a unique shape of a channel beam with two rectangular hollow flanges and is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, no research has been undertaken on the shear behaviour of LiteSteel beams with torsionally rigid, rectangular hollow flanges. In the present investigation, experimental studies involving more than 30 shear tests were carried out to investigate the shear behaviour of 13 different LSB sections. It was found that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LiteSteel beams. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Experimental results are presented and compared with corresponding predictions from the current design codes in this paper. Appropriate improvements have been proposed for the shear strength of LSBs based on AS/NZS 4600 design equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of experimental studies on the shear strength of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB) with web openings. The innovative LSB sections have the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in the building industry. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LSBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LSBs with web openings. Therefore a detailed experimental study involving 26 shear tests was undertaken to investigate the shear behaviour and strength of different LSB sections. Simply supported test specimens of LSBs with an aspect ratio of 1.5 were loaded at midspan until failure. This paper presents the details of this experimental study and the results. Experimental results showed that the current design rules in cold-formed steel structures design codes (AS/NZS 4600) [1] are very conservative for the shear design of LSBs with web openings. Improved design equations have been proposed for the shear strength of LSBs with web openings based on experimental results from this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed steel lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed experimental study involving 32 shear tests was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Simply supported test specimens of LCBs with an aspect ratio of 1.0 and 1.5 were loaded at mid-span until failure. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations have been proposed for the shear strength of LCBs with web openings based on the experimental results from this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel lipped channel beams (LCB) are used extensively in residential, industrial and commercial buildings as load bearing structural elements. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Past research has shown that the shear capacities of LCBs were reduced by up to 70% due to the inclusion of these web openings. Hence there is a need to improve the shear capacities of LCBs with web openings. A cost effective way of eliminating the detrimental effects of large web openings is to attach suitable stiffeners around the web openings and restore the original shear strength and stiffness of the LCBs. Hence detailed experimental studies were undertaken to investigate the shear behaviour and strength of LCBs with stiffened web openings. Both plate and stud stiffeners with varying sizes and thicknesses were attached to the web elements of LCBs using different screw-fastening arrangements. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Test results showed that the plate stiffeners established using AISI recommendations are inadequate to restore the shear strengths of LCBs with web openings. Hence new stiffener arrangements have been proposed for LCBs based on experimental results. This paper presents the details of this experimental study on the shear strength of lipped channel beams with stiffened web openings, and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel Lipped Channel Beams (LCB) with web openings are commonly used as floor joists and bearers in building structures. Shear behaviour of these beams is more complicated and their shear capacities are considerably reduced by the presence of web openings. Hence detailed numerical and experimental studies of simply supported LCBs under a mid-span load with aspect ratios of 1.0 and 1.5 were undertaken to investigate the shear behaviour and strength of LCBs with web openings. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative. Improved design equations were therefore proposed for the shear strength of LCBs with web openings based on both experimental and numerical results. This research showed a significant reduction in shear capacities of LCBs when large web openings are included for the purpose of locating building services. A cost effective method of eliminating such detrimental effects of large circular web openings was also therefore investigated using experimental and numerical studies. For this purpose LCBS were reinforced using plate, stud, transverse and sleeve stiffeners with varying sizes and thicknesses that were welded and screw-fastened to the web of LCBs. These studies showed that plate stiffeners were the most suitable. Suitable screw-fastened plate stiffener arrangements with optimum thicknesses were then proposed for LCBs with web openings to restore their original shear capacities. This paper presents the details of finite element analyses and experiments of LCBs with web openings in shear, and the development of improved shear design rules. It then describes the experimental and numerical studies to determine the optimum plate stiffener arrangements and the results. The proposed shear design rules in this paper can be considered for inclusion in the future versions of cold-formed steel design codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prime aim of this research project is to evaluate the performance of confined masonry walls under in-plane shear with a view to contributing to the national masonry design standard through a set of design clauses. This aim stems from the criticisms of the current provisions of the in-plane shear capacity equations in the Australian Masonry Standard AS3700 (2011) being highly non-conservative. This PhD thesis is an attempt to address this gap in the knowledge through systematic investigation of the key parameters that affects the in-plane shear strength of the masonry walls through laboratory experiments and extensive finite element analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intermittently rivet fastened Rectangular Hollow Flange Channel Beam (RHFCB) is a new cold-formed hollow section proposed as an alternative to welded hollow flange beams. It is a monosymmetric channel section made by intermittently rivet fastening two torsionally rigid rectangular hollow flanges to a web plate. This method will allow the development of optimum sections by choosing appropriate combinations of web and flange plate widths and thicknesses. RHFCBs can be commonly used as flexural members in buildings. Many experimental and numerical studies have been carried out in the past to investigate the shear behaviour of lipped channel beams. However, no research has been undertaken on the shear behaviour of rivet fastened RHFCBs. Therefore a detailed experimental study involving 19 shear tests was undertaken to investigate the shear behaviour and capacities of rivet fastened RHFCBs. Simply supported test specimens of RHFCB with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. Comparison of experimental results with corresponding predictions from the current Australian cold-formed steel design rules showed that the current design rules are very conservative for the shear design of rivet fastened RHFCBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Appropriate improvements have been proposed for the design rules of shear strength of rivet fastened RHFCBs within the Direct Strength Method format. This paper presents the details of this study and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of experimental studies on the effect of real support conditions on the shear strength of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. In many applications in the building industry LSBs are used with only one web side plate (WSP) at their supports. The WSPs are also often not full height plates. Past research studies showed that these real support connections did not provide the required simply supported conditions. Many studies have been carried out to evaluate the behaviour and design of LSBs with simply supported conditions subject to pure bending and predominant shear actions. To date, however, no investigation has been conducted into the effect of real support conditions on the shear strength of LSBs. Hence a detailed experimental study based on 25 shear tests was undertaken to investigate the shear behaviour and strength of LSBs with real support conditions. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at mid-span until failure. It was found that the effect of using one WSP on the shear behaviour of LSB is significant and there is about 25% shear capacity reduction due to the lateral movement of the bottom flange at the supports. Shear capacity of LSB was also found to decrease when full height WSPs were not used. Suitably improved support connections were developed to improve the shear capacity of LSBs based on test results. Details of the recommended support connections and shear capacity results are given in this paper.