893 resultados para Shape optimization method
Resumo:
X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.
A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.
Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.
The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).
First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.
Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.
Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.
The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.
To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.
The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.
The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.
Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.
The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.
In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.
Resumo:
A tenet of modern radiotherapy (RT) is to identify the treatment target accurately, following which the high-dose treatment volume may be expanded into the surrounding tissues in order to create the clinical and planning target volumes. Respiratory motion can induce errors in target volume delineation and dose delivery in radiation therapy for thoracic and abdominal cancers. Historically, radiotherapy treatment planning in the thoracic and abdominal regions has used 2D or 3D images acquired under uncoached free-breathing conditions, irrespective of whether the target tumor is moving or not. Once the gross target volume has been delineated, standard margins are commonly added in order to account for motion. However, the generic margins do not usually take the target motion trajectory into consideration. That may lead to under- or over-estimate motion with subsequent risk of missing the target during treatment or irradiating excessive normal tissue. That introduces systematic errors into treatment planning and delivery. In clinical practice, four-dimensional (4D) imaging has been popular in For RT motion management. It provides temporal information about tumor and organ at risk motion, and it permits patient-specific treatment planning. The most common contemporary imaging technique for identifying tumor motion is 4D computed tomography (4D-CT). However, CT has poor soft tissue contrast and it induce ionizing radiation hazard. In the last decade, 4D magnetic resonance imaging (4D-MRI) has become an emerging tool to image respiratory motion, especially in the abdomen, because of the superior soft-tissue contrast. Recently, several 4D-MRI techniques have been proposed, including prospective and retrospective approaches. Nevertheless, 4D-MRI techniques are faced with several challenges: 1) suboptimal and inconsistent tumor contrast with large inter-patient variation; 2) relatively low temporal-spatial resolution; 3) it lacks a reliable respiratory surrogate. In this research work, novel 4D-MRI techniques applying MRI weightings that was not used in existing 4D-MRI techniques, including T2/T1-weighted, T2-weighted and Diffusion-weighted MRI were investigated. A result-driven phase retrospective sorting method was proposed, and it was applied to image space as well as k-space of MR imaging. Novel image-based respiratory surrogates were developed, improved and evaluated.
Resumo:
Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung.
The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future testing. Our imaging system has been able to define the location and composition of the various materials in the phantom. These phantoms were used to characterize the CACSSI system in terms of beam width and imaging technique. The result of this work showed accurate modeling and characterization of the phantoms through comparison of the tissue-equivalent form factors to those from literature. The physical construction of the phantoms, based on actual patient anatomy, was validated using mammography and computed tomography to visually compare the clinical images to those of actual patient anatomy.
Resumo:
Scheduling optimization is concerned with the optimal allocation of events to time slots. In this paper, we look at one particular example of scheduling problems - the 2015 Joint Statistical Meetings. We want to assign each session among similar topics to time slots to reduce scheduling conflicts. Chapter 1 briefly talks about the motivation for this example as well as the constraints and the optimality criterion. Chapter 2 proposes use of Latent Dirichlet Allocation (LDA) to identify the topic proportions in each session and talks about the fitting of the model. Chapter 3 translates these ideas into a mathematical formulation and introduces a Greedy Algorithm to minimize conflicts. Chapter 4 demonstrates the improvement of the scheduling with this method.
Resumo:
Purpose: To investigate the effect of incorporating a beam spreading parameter in a beam angle optimization algorithm and to evaluate its efficacy for creating coplanar IMRT lung plans in conjunction with machine learning generated dose objectives.
Methods: Fifteen anonymized patient cases were each re-planned with ten values over the range of the beam spreading parameter, k, and analyzed with a Wilcoxon signed-rank test to determine whether any particular value resulted in significant improvement over the initially treated plan created by a trained dosimetrist. Dose constraints were generated by a machine learning algorithm and kept constant for each case across all k values. Parameters investigated for potential improvement included mean lung dose, V20 lung, V40 heart, 80% conformity index, and 90% conformity index.
Results: With a confidence level of 5%, treatment plans created with this method resulted in significantly better conformity indices. Dose coverage to the PTV was improved by an average of 12% over the initial plans. At the same time, these treatment plans showed no significant difference in mean lung dose, V20 lung, or V40 heart when compared to the initial plans; however, it should be noted that these results could be influenced by the small sample size of patient cases.
Conclusions: The beam angle optimization algorithm, with the inclusion of the beam spreading parameter k, increases the dose conformity of the automatically generated treatment plans over that of the initial plans without adversely affecting the dose to organs at risk. This parameter can be varied according to physician preference in order to control the tradeoff between dose conformity and OAR sparing without compromising the integrity of the plan.
Resumo:
A certain type of bacterial inclusion, known as a bacterial microcompartment, was recently identified and imaged through cryo-electron tomography. A reconstructed 3D object from single-axis limited angle tilt-series cryo-electron tomography contains missing regions and this problem is known as the missing wedge problem. Due to missing regions on the reconstructed images, analyzing their 3D structures is a challenging problem. The existing methods overcome this problem by aligning and averaging several similar shaped objects. These schemes work well if the objects are symmetric and several objects with almost similar shapes and sizes are available. Since the bacterial inclusions studied here are not symmetric, are deformed, and show a wide range of shapes and sizes, the existing approaches are not appropriate. This research develops new statistical methods for analyzing geometric properties, such as volume, symmetry, aspect ratio, polyhedral structures etc., of these bacterial inclusions in presence of missing data. These methods work with deformed and non-symmetric varied shaped objects and do not necessitate multiple objects for handling the missing wedge problem. The developed methods and contributions include: (a) an improved method for manual image segmentation, (b) a new approach to 'complete' the segmented and reconstructed incomplete 3D images, (c) a polyhedral structural distance model to predict the polyhedral shapes of these microstructures, (d) a new shape descriptor for polyhedral shapes, named as polyhedron profile statistic, and (e) the Bayes classifier, linear discriminant analysis and support vector machine based classifiers for supervised incomplete polyhedral shape classification. Finally, the predicted 3D shapes for these bacterial microstructures belong to the Johnson solids family, and these shapes along with their other geometric properties are important for better understanding of their chemical and biological characteristics.
Resumo:
The coupling of mechanical stress fields in polymers to covalent chemistry (polymer mechanochemistry) has provided access to previously unattainable chemical reactions and polymer transformations. In the bulk, mechanochemical activation has been used as the basis for new classes of stress-responsive polymers that demonstrate stress/strain sensing, shear-induced intermolecular reactivity for molecular level remodeling and self-strengthening, and the release of acids and other small molecules that are potentially capable of triggering further chemical response. The potential utility of polymer mechanochemistry in functional materials is limited, however, by the fact that to date, all reported covalent activation in the bulk occurs in concert with plastic yield and deformation, so that the structure of the activated object is vastly different from its nascent form. Mechanochemically activated materials have thus been limited to “single use” demonstrations, rather than as multi-functional materials for structural and/or device applications. Here, we report that filled polydimethylsiloxane (PDMS) elastomers provide a robust elastic substrate into which mechanophores can be embedded and activated under conditions from which the sample regains its original shape and properties. Fabrication is straightforward and easily accessible, providing access for the first time to objects and devices that either release or reversibly activate chemical functionality over hundreds of loading cycles.
While the mechanically accelerated ring-opening reaction of spiropyran to merocyanine and associated color change provides a useful method by which to image the molecular scale stress/strain distribution within a polymer, the magnitude of the forces necessary for activation had yet to be quantified. Here, we report single molecule force spectroscopy studies of two spiropyran isomers. Ring opening on the timescale of tens of milliseconds is found to require forces of ~240 pN, well below that of previously characterized covalent mechanophores. The lower threshold force is a combination of a low force-free activation energy and the fact that the change in rate with force (activation length) of each isomer is greater than that inferred in other systems. Importantly, quantifying the magnitude of forces required to activate individual spiropyran-based force-probes enables the probe behave as a “scout” of molecular forces in materials; the observed behavior of which can be extrapolated to predict the reactivity of potential mechanophores within a given material and deformation.
We subsequently translated the design platform to existing dynamic soft technologies to fabricate the first mechanochemically responsive devices; first, by remotely inducing dielectric patterning of an elastic substrate to produce assorted fluorescent patterns in concert with topological changes; and second, by adopting a soft robotic platform to produce a color change from the strains inherent to pneumatically actuated robotic motion. Shown herein, covalent polymer mechanochemistry provides a viable mechanism to convert the same mechanical potential energy used for actuation into value-added, constructive covalent chemical responses. The color change associated with actuation suggests opportunities for not only new color changing or camouflaging strategies, but also the possibility for simultaneous activation of latent chemistry (e.g., release of small molecules, change in mechanical properties, activation of catalysts, etc.) in soft robots. In addition, mechanochromic stress mapping in a functional actuating device might provide a useful design and optimization tool, revealing spatial and temporal force evolution within the actuator in a way that might also be coupled to feedback loops that allow autonomous, self-regulation of activity.
In the future, both the specific material and the general approach should be useful in enriching the responsive functionality of soft elastomeric materials and devices. We anticipate the development of new mechanophores that, like the materials, are reversibly and repeatedly activated, expanding the capabilities of soft, active devices and further permitting dynamic control over chemical reactivity that is otherwise inaccessible, each in response to a single remote signal.
Resumo:
Free energy calculations are a computational method for determining thermodynamic quantities, such as free energies of binding, via simulation.
Currently, due to computational and algorithmic limitations, free energy calculations are limited in scope.
In this work, we propose two methods for improving the efficiency of free energy calculations.
First, we expand the state space of alchemical intermediates, and show that this expansion enables us to calculate free energies along lower variance paths.
We use Q-learning, a reinforcement learning technique, to discover and optimize paths at low computational cost.
Second, we reduce the cost of sampling along a given path by using sequential Monte Carlo samplers.
We develop a new free energy estimator, pCrooks (pairwise Crooks), a variant on the Crooks fluctuation theorem (CFT), which enables decomposition of the variance of the free energy estimate for discrete paths, while retaining beneficial characteristics of CFT.
Combining these two advancements, we show that for some test models, optimal expanded-space paths have a nearly 80% reduction in variance relative to the standard path.
Additionally, our free energy estimator converges at a more consistent rate and on average 1.8 times faster when we enable path searching, even when the cost of path discovery and refinement is considered.
Resumo:
The effectiveness of an optimization algorithm can be reduced to its ability to navigate an objective function’s topology. Hybrid optimization algorithms combine various optimization algorithms using a single meta-heuristic so that the hybrid algorithm is more robust, computationally efficient, and/or accurate than the individual algorithms it is made of. This thesis proposes a novel meta-heuristic that uses search vectors to select the constituent algorithm that is appropriate for a given objective function. The hybrid is shown to perform competitively against several existing hybrid and non-hybrid optimization algorithms over a set of three hundred test cases. This thesis also proposes a general framework for evaluating the effectiveness of hybrid optimization algorithms. Finally, this thesis presents an improved Method of Characteristics Code with novel boundary conditions, which better characterizes pipelines than previous codes. This code is coupled with the hybrid optimization algorithm in order to optimize the operation of real-world piston pumps.
Resumo:
Design and analysis of conceptually different cooling systems for the human heart preservation are numerically investigated. A heart cooling container with required connections was designed for a normal size human heart. A three-dimensional, high resolution human heart geometric model obtained from CT-angio data was used for simulations. Nine different cooling designs are introduced in this research. The first cooling design (Case 1) used a cooling gelatin only outside of the heart. In the second cooling design (Case 2), the internal parts of the heart were cooled via pumping a cooling liquid inside both the heart’s pulmonary and systemic circulation systems. An unsteady conjugate heat transfer analysis is performed to simulate the temperature field variations within the heart during the cooling process. Case 3 simulated the currently used cooling method in which the coolant is stagnant. Case 4 was a combination of Case 1 and Case 2. A linear thermoelasticity analysis was performed to assess the stresses applied on the heart during the cooling process. In Cases 5 through 9, the coolant solution was used for both internal and external cooling. For external circulation in Case 5 and Case 6, two inlets and two outlets were designed on the walls of the cooling container. Case 5 used laminar flows for coolant circulations inside and outside of the heart. Effects of turbulent flow on cooling of the heart were studied in Case 6. In Case 7, an additional inlet was designed on the cooling container wall to create a jet impinging the hot region of the heart’s wall. Unsteady periodic inlet velocities were applied in Case 8 and Case 9. The average temperature of the heart in Case 5 was +5.0oC after 1500 s of cooling. Multi-objective constrained optimization was performed for Case 5. Inlet velocities for two internal and one external coolant circulations were the three design variables for optimization. Minimizing the average temperature of the heart, wall shear stress and total volumetric flow rates were the three objectives. The only constraint was to keep von Mises stress below the ultimate tensile stress of the heart’s tissue.
Resumo:
This paper describes an implementation of a method capable of integrating parametric, feature based, CAD models based on commercial software (CATIA) with the SU2 software framework. To exploit the adjoint based methods for aerodynamic optimisation within the SU2, a formulation to obtain geometric sensitivities directly from the commercial CAD parameterisation is introduced, enabling the calculation of gradients with respect to CAD based design variables. To assess the accuracy and efficiency of the alternative approach, two aerodynamic optimisation problems are investigated: an inviscid, 3D, problem with multiple constraints, and a 2D high-lift aerofoil, viscous problem without any constraints. Initial results show the new parameterisation obtaining reliable optimums, with similar levels of performance of the software native parameterisations. In the final paper, details of computing CAD sensitivities will be provided, including accuracy as well as linking geometric sensitivities to aerodynamic objective functions and constraints; the impact in the robustness of the overall method will be assessed and alternative parameterisations will be included.
Resumo:
The viscosity of ionic liquids (ILs) has been modeled as a function of temperature and at atmospheric pressure using a new method based on the UNIFAC–VISCO method. This model extends the calculations previously reported by our group (see Zhao et al. J. Chem. Eng. Data 2016, 61, 2160–2169) which used 154 experimental viscosity data points of 25 ionic liquids for regression of a set of binary interaction parameters and ion Vogel–Fulcher–Tammann (VFT) parameters. Discrepancies in the experimental data of the same IL affect the quality of the correlation and thus the development of the predictive method. In this work, mathematical gnostics was used to analyze the experimental data from different sources and recommend one set of reliable data for each IL. These recommended data (totally 819 data points) for 70 ILs were correlated using this model to obtain an extended set of binary interaction parameters and ion VFT parameters, with a regression accuracy of 1.4%. In addition, 966 experimental viscosity data points for 11 binary mixtures of ILs were collected from literature to establish this model. All the binary data consist of 128 training data points used for the optimization of binary interaction parameters and 838 test data points used for the comparison of the pure evaluated values. The relative average absolute deviation (RAAD) for training and test is 2.9% and 3.9%, respectively.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results.
Resumo:
Purpose. Anastomotic strictures occur in 3-30% of colorectal anastomosis and one of the main causes may be a reaction to the presence of the metal staples used for suturing. The aim of this study was to evaluate the efficacy of a compression anastomosis ring using the memoryshaped device in initial, i.e. nickel-titanium alloy (NiTi) for the prevention of colorectal anastomotic strictures. Patients and methods. A compression anastomosis ring device (NiTi CAR 27™) was used to perform compression anastomosis in 20 patients underwent left hemicolectomy and anterior resection of the rectum for carcinoma. An endoscopic check of the anastomosis was carried out at one month and at six months after surgery. Results. In 2 patients (10%) a dehiscence of the anastomosis occurred on the fifth and the eighth postoperative day. No anastomotic strictures were observed in any of the other 18 patients at six months follow-up after surgery. Conclusion. Our preliminary results suggest that the use of a compression anastomosis ring might well be a valid method of preventing anastomotic strictures in colorectal surgery. Further studies involving a larger number of patients are needed in order to confirm these preliminary results.