960 resultados para Shackleton, Richard, d.1792.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep sea sediment cores from the North and South Pacific gyres over the past 85 million years. We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma), was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Paleogene Ocean (66-20 Ma), initiated by the Cretaceous/Paleogene Mass Extinction, had nearly 4 times the abundance of fish teeth compared to elasmobranch denticles. This Paleogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages about 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Ocean Drilling Program (ODP) Leg 105, three sites (Sites 645 through 647) were drilled in Baffin Bay and the Labrador Sea to examine the tectonic evolution and the climatic and oceanic histories of this region. Biostratigraphic and magnetostratigraphic results vary at each site, while stratigraphic resolution depends on the limited abundance of marker species and the completeness of the paleomagnetic record. Because of the paucity of planktonic microfossils and the poor paleomagnetic record signatures, stratigraphic determinations at Site 645 often rely on defining minimum temporal constraints on specific samples or stratigraphic intervals. The completed stratigraphy indicates that the sedimentary sequence recovered at Site 645 is early Miocene to Holocene in age. The magnetostratigraphy and biostratigraphies are better defined at Sites 646 and 647 in the Labrador Sea. Site 646 generally contains a well-developed magnetostratigraphy and calcareous microfossil biostratigraphy. This biostratigraphy is based on calcareous nannofossils and planktonic foraminifers typical of the North Atlantic Ocean. Siliceous microfossils are also present at Site 646, but they are restricted to upper Pliocene through Holocene sediments. The stratigraphic sequence recovered at Site 646 is late Miocene to Holocene in age. Based primarily on the calcareous nannofossil stratigraphy, the sequence recovered at Site 647 consists of lower Eocene to lower Oligocene, lower Miocene, upper Miocene, and upper Pliocene through Holocene sediments. Three hiatuses are present in this sequence: the older hiatus separates lower Oligocene sediments from lower Miocene sediments, another hiatus separates lower Miocene sediments from upper Miocene sediments, and the youngest one separates upper Miocene from upper Pliocene sediments. A magnetostratigraphy is defined for the interval from the Gauss/Matuyama boundary through the Brunhes (Clement et al., this volume). Both planktonic foraminifers and siliceous microfossils have restricted occurrences. Planktonic foraminifers occur in Pliocene and younger sediments, and siliceous microfossils are present in lower Miocene and lower Oligocene sediments. The near-continuous Eocene through lower Oligocene sequence recovered at Site 647 allows the calcareous nannofossils and diatom stratigraphies at this site to act as a Paleogene stratigraphic framework. This framework can be compared with the stratigraphy previously completed for DSDP Site 112.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the northern McMurdo Sound (Ross Sea, Antarctica), the CRP-2/2A drillhole targeted the western margin of the Victoria Land Basin to investigate Neogene to Palaeogene climatic and tectonic history by obtaining continuous core and downhole logs. Well logging of CRP-2/2A has provided a complete and comprehensive dataset of in situ geophysical measurements. This paper describes the evaluation and interpretation of the downhole logging data using multivariate statistical methods. Two major types of multivariate statistical methods were each yielding a different perspective: (1) Factor analysis was used as an objective tool for classification of the drilled sequence based on physical and chemical properties. The factor logs are mirroring the basic geological controls (i.e., grain size, porosity, clay mineralogy) behind the measured geophysical properties, thereby making them easier to interpret geologically. (2) Cluster analysis of the logs groups similar downhole geophysical properties into one cluster, delineating individual logging or sedimentological units. These objectively and independently defined units, or statistical electrofacies, are helpful in differentiating lithological and sedimentological characterisations (e.g. grain size, provenance). The multivariate statistical methods of factor and cluster analysis proved to be powerful tools for fast, reliable, and objective characterisation of downhole geophysical properties at CRP-2/2A, resulting in interpretations which are consistent with sedimentological findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first well logs collected below the Antarctic circle were obtained during Leg 113 at Site 693 on the Dronning Maud Land Margin (Antarctica) in the Weddell Sea. Gamma-ray, resistivity, and sonic logs were collected between 108.0 and 439.0 mbsf. The downhole logs show good agreement with the data collected from cores and provide a continuous measurement of the sedimentary record. These continuous log records show that the rather uniform Tertiary lithology seen in cores is characterized by high-frequency variability in the log data. Several thin hard streaks are identified, the largest of which coincides with a major Miocene hiatus. Associated with this hiatus is a change to lower illite content (and correspondingly lower gamma-ray counts) and to a significant increase in diatom content. Spectral analysis of the logs was performed on the lower Pliocene through upper Oligocene interval (108.0-343.0 mbsf). Between 108.0 and 245.0 mbsf, average sedimentation rates (50 and 26 m/m.y.) are high enough to show that variance is present in the orbital eccentricity (~95 k.y.) and obliquity (~41 k.y.) bands. Between 253.0 and 343.0 mbsf, the sedimentation rate (8 m/m.y.) is too low to resolve high frequency variations. The Milankovitch frequencies are best developed in the resistivity logs. Resistivity is responding to changes in porosity, which in these sediments is controlled by the abundance of biosiliceous sediments, particularly diatoms. The orbital forcing suggested by the Milankovitch frequencies may be influencing diatom productivity by inducing oscillations in upwelling, ice coverage, pack ice, and/or polynya. Although variations in diatom abundance were observed in the cores, they were not attributed to a Milankovitch signal, and therefore in this environment, downhole logs are an important contribution to the detection and understanding of orbitally influenced changes in sedimentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature reconstructions indicate that the Pliocene was ~3 °C warmer globally than today, and several recent reconstructions of Pliocene atmospheric CO2 indicate that it was above pre-industrial levels and similar to those likely to be seen this century. However, many of these reconstructions have been of relatively low temporal resolution, meaning that these records may have failed to capture variations associated with the 41 Kyr glacial-interglacial cycles thought to operate in the Pliocene. Here we present a new, high temporal resolution alkenone carbon isotope based record of pCO2 spanning 2.8 to 3.3 million years ago from ODP Site 999. Our record is of high enough resolution (~19 Kyrs) to resolve glacial-interglacial changes beyond the intrinsic uncertainty of the proxy method. The record suggests that Pliocene CO2 levels were relatively stable, exhibiting variation less than 55 ppm. We perform sensitivity studies to investigate the possible effect of changing sea surface temperature, which highlights the importance of accurate and precise SST reconstructions for alkenone palaeobarometry, but demonstrate that these uncertainties do not affect our conclusions of relatively stable pCO2 levels during this interval.

Relevância:

100.00% 100.00%

Publicador: