952 resultados para Semiarid. Cactaceae. Algaroba. Bioactive compounds. Food functionality. Sensory evaluation
Resumo:
Despite its high nutritional value, soymilk consumption in Western countries is limited mainly due to undesirable flavors developed during the traditional elaboration process. Brazil nut (Bertholletia excelsa) has pleasant flavor and recognized nutritional value. Thus, the aim of this work was to elaborate a soy and Brazil nut beverage exploring the use of two national products of high nutritional quality. The process for manufacturing a soy and Brazil nut beverage consisted of elaboration, formulation, and homogenization of soymilk and Brazil nut milk. The addition of five levels (10, 20, 30, 40, and 50%) of Brazil nut milk to soy beverages was investigated. Although no significant differences in consumer average preference (p > 0.05) were observed among the beverages, analyzing both the consumer preference frequency distribution of the products and the Internal Preference Mapping (IPM), it was possible to conclude that the beverage with 30% of Brazil nut milk reached the most adequate performance demonstrating the sensory benefits Brazil nuts brought to the product. Regarding proximate composition, it did not present a better performance in terms of nutritional value, except for the oil content. The soy and Brazil nut beverage presented visual stability and no phase separation despite the non-stability shown by Brazil nut beverage itself. When Brazil nut milk was added to soy beverage, the final product became whiter than soy beverage, which is appealing to consumers who normally search for a clearer soymilk. The soy and Brazil nut beverage processing can be considered an alternative to increase the use of Brazil nuts in the Brazilian diet.
Resumo:
Partially hydrogenated vegetable oil has been used in snack flavoring for its ability to entrap hydrophobic aroma compounds. However, increasing concerns about the health risks of saturated and trans fatty acids (TFA) consumption led to the development of alternative agents for this use. We studied the use of rapeseed oil (O) as a replacement for partially hydrogenated vegetable oil (F) in snack flavoring. Products with several different rapeseed oil contents were designed, packed, and then stored for twenty weeks at room temperature. Fatty acids compositions, TBA reactive substances (TBARS), shear strength and sensory acceptability were assessed throughout storage time. Total replacement reduced saturated fat by 72.5% in relation to market available snacks. TFA were initially absent in these products, but their production occurred spontaneously on the 8th week with gradual increase during storage up to levels still lower than those observed in commercially available snacks. Low TBARS levels and stability of shear strength during the twenty-week of storage were also observed. Snacks flavored with F or O were equally well accepted during the storage period. It is feasible to develop a storage stable snack with reduced saturated and trans fatty acid contents while maintaining the high sensory acceptability typical of this food product.
Resumo:
The volatile components of noni at two ripening stages were isolated by headspace solid-phase microextraction using 65 µm Polydimethylsiloxane-Divinylbenzene (PDMS/DVB) fibers and analyzed using GC/MS. Both maturation stages had several compounds in common. Ninety-six compounds were identified, from which octanoic acid ( 70% of total extract) and hexanoic acid (
8% of total extract) were found to be the major constituents. Due to noni maturation, octanoic acid, decanoic acid and 2E-nonenal decreased their concentrations, while some esters (methyl hexanoate, methyl octanoate, ethyl octanoate and methyl 4E-decenoate), which their fruity odor notes, increased their contents. Two unsaturated esters, reported for the first time in this fruit, 3-methyl-3-buten-1-yl hexanoate and 3-methyl-3-buten-1-yl octanoate, significantly decreased their concentration in the ripe to over-ripe fruits.
Resumo:
The use of hydrolysed meat in diets contributes to the improvement of protein, vitamin and mineral supply. This work aims at checking the acceptance pattern in meat hydrolysates. Four preparations have been developed with three types of hydrolysates in domestic-like conditions. Acceptance was verified by means of sensory analysis using the nine-point hedonic scale. Sensory tests have been carried out in three sessions (according to the kind of hydrolysates). In the evaluation file, information on age groups has been included. The statistical analysis has been made by ANOVA and Tukey test. The best accepted preparation have been the turkey and chicken hydrolysed balls. Hydrolysates can be used in many different kinds of preparations, but it is necessary to know both the age group it will be used to and its sensory and chemical-physical features to ensure the taste and the original appearance of the final product.
Resumo:
Cinnamomum zeylanicum Blume, Lauraceae, has long been known for having many biological properties. This study aimed to identify the constituents of the essential oil from C. zeylanicum leaves using GC-MS and to assess its inhibitory effect on Salmonella enterica, Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa based on MIC and MBC determination and kill-time study. Eugenol (73.27%) was the most prevalent compound in the essential oil followed by trans-β-cariophyllene (5.38%), linalool (3.31%), and alcohol cinamic acetate (2.53%). The results showed an interesting antibacterial activity of the oil with MIC ranging from 1.25 to 10 µL.mL-1. MBC values were in the range of 20 - 80 µL.mL-1. A concentration of 10 and 40 µL.mL-1 of the essential oil caused a fast and steady decrease in viable cell count (2 to 5 log cycles) of all assayed strains along 24 hours. A concentration of 40 µL.mL-1 of the oil provided a total elimination of the initial inocula of S. aureus after 2 hours. These results show the possibility of regarding the essential oil from C. zeylanicum leaves as alternative sources of antimicrobial compounds to be applied in food conservation systems.
Resumo:
Carotenoids are important constituents of food due to their color and because their degradation products generate important volatile compounds in foods. Aroma compounds derived from carotenoids are widely distributed in nature, and they are precursors of many important aromas in foods such as fruits and in flowers as well. They present high aromatic potential and are therefore of great interest to the industries of aromas and fragrances. In this study, more than 300 previously isolated microorganisms with potential for biotransformation of β-carotene present in the culture medium were selected using the plate method; about 80 strains presented capacity to produce aroma compounds and 7 strains were selected by an untrained panel of tasters to generate aroma compounds. The β-ionone was the main compound produced by CS1 (34.0 mg.L-1) and CF9 (42.4 mg.L-1) microorganisms at 72 and 24 hours of fermentation, cultured with and without pre-inoculation, respectively. The β-damascone and pseudoionone were found in low concentrations, 1,1,6-trimethyl-1,2,3,4-tetrahydronaphthalen (TTN) was tentatively identified and other compounds such as apocarotenoids, apparently obtained from the cleavage of the central part of the carotenoid, were detected.
Effect of wheat flour protein variations on sensory attributes, texture and staling of Taftoon bread
Resumo:
The quality of flat breads depends in part on the textural properties of breads during storage. These properties are largely affected by flour protein quality and quantity. The present study aimed to examine differences between sensory properties, textural and staling of Tandoori breads made from flours of different quality and different quantities of protein. This was implemented by using three flours with 9.4, 11.5 and 13.5% protein contents and different protein qualities shown by Zeleney sedimentation volume 16.25, 22.75 and 23.25 mL respectively. Bread strips were submitted to uniaxial compression between two parallel plates on an Instron Universal Testing machine, and firmness of the breads was determined. Results indicated the differences in the sensory attributes of breads produced by flours of different protein content and quality, demonstrating that high protein high quality flours are not able to sheet and expand under the high temperature - short time conditions employed in Taftoon bread production and are therefore not suitable for this kind of bread. Results showed that flour with 11.5% protein content, produced bread with better sensory characteristics and acceptable storage time.
Resumo:
The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636) using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME). Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm), temperature (25-60 ºC), extraction time (10-30 minutes), and sample volume (2-3 mL). The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD). The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v). In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm), temperature (23-33 ºC), pH (4.0-8.0), precursor concentration (0.02-0.1%), mannitol (0-6%), and asparagine concentration (0-0.2%) was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.
Resumo:
Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds) in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC) or refrigerated (5 ± 2 ºC) under fluorescent light exposure and analyzed on the day after processing (time zero) and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC) -Mass Spectrometry (MS): hexanal, (E)-hex-2-enal, 1-hexenol, (Z)-hex-3-enol, (Z)-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001) in hexanal and (Z)-hex-3-enyl acetate (p = 0.0029). As for the storage time, there was a much greater decrease in the esters contents, such as (Z)-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor
Resumo:
Response Surface Methodology (RSM) was applied to evaluate the chromatic features and sensory acceptance of emulsions that combine Soy Protein (SP) and red Guava Juice (GJ). The parameters analyzed were: instrumental color based on the coordinates a* (redness), b* (yellowness), L* (lightness), C* (chromaticity), h* (hue angle), visual color, acceptance, and appearance. The analyses of the results showed that GJ was responsible for the high measured values of red color, hue angle, chromaticity, acceptance, and visual color, whereas SP was the variable that increased the yellowness intensity of the assays. The redness (R²adj = 74.86%, p < 0.01) and hue angle (R²adj = 80.96%, p < 0.01) were related to the independent variables by linear models, while the sensory data (color and acceptance) could not be modeled due to a high variability. The models of yellowness, lightness, and chromaticity did not present lack of fit but presented adjusted determination coefficients bellow 70%. Notwithstanding, the linear correlations between sensory and instrumental data were not significant (p > 0.05) and low Pearson coefficients were obtained. The results showed that RSM is a useful tool to develop soy-based emulsions and model some chromatic features of guava-based emulsions through RSM.
Resumo:
The descriptive terminology and sensory prolife of four samples of Italian salami were determined using a methodology based on the Quantitative Descriptive Analysis (QDA). A sensory panel consensually defined sensory descriptors, their respective reference materials, and the descriptive evaluation ballot. Twelve individuals were selected as judges and properly trained. They used the following criteria: discriminating power, reproducibility, and individual consensus. Twelve descriptors were determined showing similarities and differences among the Italian salami samples. Each descriptor was evaluated using a 10 cm non-structured scale. The data were analyzed by ANOVA, Tukey test, and the Principal Component Analysis (PCA). The salami with coriander essential oil (T3) had lower rancid taste and rancid odor, whereas the control (T1) showed high values of these sensory attributes. Regarding brightness, T4 showed the best result. For the other attributes, T1, T2, T3, and T4 were similar.
Resumo:
The sensory quality of 'Douradão' peaches cold stored in three different conditions of controlled atmosphere (CA1, CA2, CA3 and Control) was studied. After 14, 21 and 28 days of cold storage, samples were withdrawn from CA and kept for 4 days in ambient air for ripening. The sensory profile of the peaches and the descriptive terminology were developed by methodology based on the Quantitative Descriptive Analysis (QDA). The panelists consensually defined the sensory descriptors, their respective reference materials and the descriptive evaluation ballot. Fourteen panelists were selected based on their discrimination capacity and reproducibility. Seven descriptors were generated showing similarities and differences between samples. The data were analyzed by ANOVA, Tukey test and Principal Component Analysis (PCA). Results showed significant differences in the sensory profiles of the peaches. The PCA showed that CA2 and CA3 treatments were more characterized by the fresh peach flavor, fresh peach appearance, juiciness and flesh firmness, and were effective in keeping the good quality of the 'Douradão' peaches during the 28 days of cold storage. The Control and CA1 treatments were characterized by the mealiness and were ineffective for quality maintenance of the fruits during cold storage.
Resumo:
Cajá-manga (Spondias cytherea) is a fruit with intense aroma and a sweet sour taste, thus being very appreciated. Its peel, in spite of being more fibrous, is tender and many times consumed with the pulp. The peel is a part of foods normally discarded, but many times, it is rich in taste and fibers, representing an option at the elaboration of new foods. Since there are no reports in the literature on the use of cajá-manga peel for jelly making, this work had the purpose of developing and evaluating this product. Based on the results, it was noted that the peels presented higher contents of protein, lipids, ashes, food fiber, total carbohydrates and pectin, and lower content of moisture, when compared to the pulp. The peel and the pulp (control) jellies presented the following physical-chemical characteristics: moisture, 29.5 and 34.2%; proteins, 0.19 and 0.27%; lipids, 0.11 and 0.16%; total sugars, 56.5 and 65.5%; and total soluble solids, 69 and 66 ºBrix, respectively. The sensory analysis indicated that the product elaborated from the peel presented satisfactory acceptance for all the assessed attributes: appearance, color, odor, texture, taste and global evaluation. It is concluded that the total substitution of the pulp by the peel in the formulation, results in a product with good nutritional value with no sensory damages.
Resumo:
The aging process of alcoholic beverages is generally conducted in wood barrels made with species from Quercus sp. Due to the high cost and the lack of viability of commercial production of these trees in Brazil, there is demand for new alternatives to using other native species and the incorporation of new technologies that enable greater competitiveness of sugar cane spirit aged in Brazilian wood. The drying of wood, the thermal treatment applied to it, and manufacturing techniques are important tools in defining the sensory quality of alcoholic beverages after being placed in contact with the barrels. In the thermal treatment, several compounds are changed by the application of heat to the wood and various studies show the compounds are modified, different aromas are developed, there is change in color, and beverages achieve even more pleasant taste, when compared to non-treated woods. This study evaluated the existence of significant differences between hydro-alcoholic solutions of sugar cane spirits elaborated from different species of thermo-treated and non-treated wood in terms of aroma. An acceptance test was applied to evaluate the solutions preferred by tasters under specific test conditions.
Resumo:
The volatile compositions from organic and conventional passion fruit pulps produced in Brazil were investigated. The pulps were also physicochemically characterized. The volatile compounds from the headspace of the passion fruit pulp were stripped to a Porapak Q trap for 2 hours; they were eluted with 300 µL of dichloromethane, separated by gas chromatography/flame ionisation detection and identified through gas chromatography/mass spectrometry. Both pulps conformed to the requirements of the Brazilian legislation, indicating they were suitable to be industrialized and consumed. A total of 77 compounds were detected in the headspace of the passion fruit pulps - 60 of which were identified, comprising 91% of the total chromatogram area. The major compounds were the following: ethyl butanoate, 52% and 57% of the total relative area of the chromatogram for the organic and conventional passion fruit pulps, respectively; ethyl hexanoate, 22% and 9%, respectively; and hexyl butanoate, 2% and 5%, respectively. The aroma of the organic passion fruit pulp is mainly related to the following volatile compounds: ethyl hexanoate, methyl hexanoate, β-myrcene and D-limonene. The conventional passion fruit pulp presented methyl butanoate, butyl acetate, hexanal, 1-butanol, butyl butanoate, trans-3-hexenyl acetate, cis-3-hexen-1-ol, butyl hexanoate, hexyl butanoate, 3-hexenyl butanoate and 3-hexenyl hexanoate as the main volatile compounds for aroma.