860 resultados para Semantic wikis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INEX investigates focused retrieval from structured documents by providing large test collections of structured documents, uniform evaluation measures, and a forum for organizations to compare their results. This paper reports on the INEX 2013 evaluation campaign, which consisted of four activities addressing three themes: searching professional and user generated data (Social Book Search track); searching structured or semantic data (Linked Data track); and focused retrieval (Snippet Retrieval and Tweet Contextualization tracks). INEX 2013 was an exciting year for INEX in which we consolidated the collaboration with (other activities in) CLEF and for the second time ran our workshop as part of the CLEF labs in order to facilitate knowledge transfer between the evaluation forums. This paper gives an overview of all the INEX 2013 tracks, their aims and task, the built test-collections, and gives an initial analysis of the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of cognates between two distinct languages has recently start- ed to attract the attention of NLP re- search, but there has been little research into using semantic evidence to detect cognates. The approach presented in this paper aims to detect English-French cog- nates within monolingual texts (texts that are not accompanied by aligned translat- ed equivalents), by integrating word shape similarity approaches with word sense disambiguation techniques in order to account for context. Our implementa- tion is based on BabelNet, a semantic network that incorporates a multilingual encyclopedic dictionary. Our approach is evaluated on two manually annotated da- tasets. The first one shows that across different types of natural text, our method can identify the cognates with an overall accuracy of 80%. The second one, con- sisting of control sentences with semi- cognates acting as either true cognates or false friends, shows that our method can identify 80% of semi-cognates acting as cognates but also identifies 75% of the semi-cognates acting as false friends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the availability of huge number of web services, finding an appropriate Web service according to the requirements of a service consumer is still a challenge. Moreover, sometimes a single web service is unable to fully satisfy the requirements of the service consumer. In such cases, combinations of multiple inter-related web services can be utilised. This paper proposes a method that first utilises a semantic kernel model to find related services and then models these related Web services as nodes of a graph. An all-pair shortest-path algorithm is applied to find the best compositions of Web services that are semantically related to the service consumer requirement. The recommendation of individual and composite Web services composition for a service request is finally made. Empirical evaluation confirms that the proposed method significantly improves the accuracy of service discovery in comparison to traditional keyword-based discovery methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semantic Web offers many possibilities for future Web technologies. Therefore, it is a need to search for ways that can bring the huge amount of unstructured documents from current Web to Semantic Web automatically. One big challenge in searching for such ways is how to understand patterns by both humans and machine. To address this issue, we present an innovative model which interprets patterns to high level concepts. These concepts can explain the patterns' meanings in a human understandable way while improving the information filtering performance. The model is evaluated by comparing it against one state-of-the-art benchmark model using standard Reuters dataset. The results show that the proposed model is successful. The significance of this model is three fold. It gives a way to interpret text mining output, provides a technique to find concepts relevant to the whole set of patterns which is an essential feature to understand the topic, and to some extent overcomes information mismatch and overload problems of existing models. This model will be very useful for knowledge based applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the recent results of the space project IMPERA are presented. The goal of IMPERA is the development of a multirobot planning and plan execution architecture with a focus on a lunar sample collection scenario in an unknown environment. We describe the implementation and verification of different modules that are integrated into a distributed system architecture. The modules include a mission planning approach for a multirobot system and modules for task and skill execution within a lunar use-case scenario. The skills needed for the test scenario include cooperative exploration and mapping strategies for an unknown environment, the localization and classification of sample containers using a novel approach of semantic perception, and the skill of transporting sample containers to a collection point using a mobile manipulation robot. Additionally, we present our approach of a reliable communication framework that can deal with communication loss during the mission. Several modules are tested within several experiments in the domain of planning and plan execution, communication, coordinated exploration, perception, and object transportation. An overall system integration is tested on a mission scenario experiment using three robots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development and maintenance of large and complex ontologies are often time-consuming and error-prone. Thus, automated ontology learning and revision have attracted intensive research interest. In data-centric applications where ontologies are designed or automatically learnt from the data, when new data instances are added that contradict to the ontology, it is often desirable to incrementally revise the ontology according to the added data. This problem can be intuitively formulated as the problem of revising a TBox by an ABox. In this paper we introduce a model-theoretic approach to such an ontology revision problem by using a novel alternative semantic characterisation of DL-Lite ontologies. We show some desired properties for our ontology revision. We have also developed an algorithm for reasoning with the ontology revision without computing the revision result. The algorithm is efficient as its computational complexity is in coNP in the worst case and in PTIME when the size of the new data is bounded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implicit structure of positive character traits was examined in two studies of 190 and 100 undergraduates. Participants judged the pairwise covariation or semantic similarity of 42 positive characteristics using a sorting or a rating task. Characteristics were drawn from a new classification of strengths and virtues, the Five-Factor Model, and a taxonomy of values. Participants showed consistent patterns of perceived association among the characteristics across the study conditions. Multidimensional scaling yielded three consistent dimensions underlying these judgments (“warmth vs. self-control,” “vivacity vs. decency,” and “wisdom vs. power”). Cluster analyses yielded six consistent groupings—“self-control,” “love,” “wisdom,” “drive,” “vivacity,” and “collaboration”—that corresponded only moderately to the virtue classification. All three taxonomies were systematically related to this implicit structure, but none captured it satisfactorily on its own. Revisions to positive psychology’s classification of strengths are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article presents and evaluates a model to automatically derive word association networks from text corpora. Two aspects were evaluated: To what degree can corpus-based word association networks (CANs) approximate human word association networks with respect to (1) their ability to quantitatively predict word associations and (2) their structural network characteristics. Word association networks are the basis of the human mental lexicon. However, extracting such networks from human subjects is laborious, time consuming and thus necessarily limited in relation to the breadth of human vocabulary. Automatic derivation of word associations from text corpora would address these limitations. In both evaluations corpus-based processing provided vector representations for words. These representations were then employed to derive CANs using two measures: (1) the well known cosine metric, which is a symmetric measure, and (2) a new asymmetric measure computed from orthogonal vector projections. For both evaluations, the full set of 4068 free association networks (FANs) from the University of South Florida word association norms were used as baseline human data. Two corpus based models were benchmarked for comparison: a latent topic model and latent semantic analysis (LSA). We observed that CANs constructed using the asymmetric measure were slightly less effective than the topic model in quantitatively predicting free associates, and slightly better than LSA. The structural networks analysis revealed that CANs do approximate the FANs to an encouraging degree.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our contemporary concerns about food range from food security to agricultural sustainability to getting dinner on the table for family and friends. This book investigates food issues as they intersect with participatory Internet culture--blogs, wikis, online photo- and video-sharing platforms, and social networks in efforts to bring about a healthy, socially inclusive, and sustainable food future. Focusing on our urban environments provisioned with digital and network capacities, and drawing on such "bottom-up" sociotechnical trends as DIY and open source, the chapters describe engagements with food and technology that engender (re-)creative interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis targets on a challenging issue that is to enhance users' experience over massive and overloaded web information. The novel pattern-based topic model proposed in this thesis can generate high-quality multi-topic user interest models technically by incorporating statistical topic modelling and pattern mining. We have successfully applied the pattern-based topic model to both fields of information filtering and information retrieval. The success of the proposed model in finding the most relevant information to users mainly comes from its precisely semantic representations to represent documents and also accurate classification of the topics at both document level and collection level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Industrial production and supply chains face increased demands for mass customization and tightening regulations on the traceability of goods, leading to higher requirements concerning flexibility, adaptability, and transparency of processes. Technologies for the ’Internet of Things' such as smart products and semantic representations pave the way for future factories and supply chains to fulfill these challenging market demands. In this chapter a backend-independent approach for information exchange in open-loop production processes based on Digital Product Memories DPMs is presented. By storing order-related data directly on the item, relevant lifecycle information is attached to the product itself. In this way, information handover between several stages of the value chain with focus on the manufacturing phase of a product has been realized. In order to report best practices regarding the application of DPM in the domain of industrial production, system prototype implementations focusing on the use case of producing and handling a smart drug case are illustrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Place recognition has long been an incompletely solved problem in that all approaches involve significant compromises. Current methods address many but never all of the critical challenges of place recognition – viewpoint-invariance, condition-invariance and minimizing training requirements. Here we present an approach that adapts state-of-the-art object proposal techniques to identify potential landmarks within an image for place recognition. We use the astonishing power of convolutional neural network features to identify matching landmark proposals between images to perform place recognition over extreme appearance and viewpoint variations. Our system does not require any form of training, all components are generic enough to be used off-the-shelf. We present a range of challenging experiments in varied viewpoint and environmental conditions. We demonstrate superior performance to current state-of-the- art techniques. Furthermore, by building on existing and widely used recognition frameworks, this approach provides a highly compatible place recognition system with the potential for easy integration of other techniques such as object detection and semantic scene interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conceptual combination performs a fundamental role in creating the broad range of compound phrases utilised in everyday language. While the systematicity and productivity of language provide a strong argument in favour of assuming compositionality, this very assumption is still regularly questioned in both cognitive science and philosophy. This article provides a novel probabilistic framework for assessing whether the semantics of conceptual combinations are compositional, and so can be considered as a function of the semantics of the constituent concepts, or not. Rather than adjudicating between different grades of compositionality, the framework presented here contributes formal methods for determining a clear dividing line between compositional and non-compositional semantics. Compositionality is equated with a joint probability distribution modelling how the constituent concepts in the combination are interpreted. Marginal selectivity is emphasised as a pivotal probabilistic constraint for the application of the Bell/CH and CHSH systems of inequalities (referred to collectively as Bell-type). Non-compositionality is then equated with either a failure of marginal selectivity, or, in the presence of marginal selectivity, with a violation of Bell-type inequalities. In both non-compositional scenarios, the conceptual combination cannot be modelled using a joint probability distribution with variables corresponding to the interpretation of the individual concepts. The framework is demonstrated by applying it to an empirical scenario of twenty-four non-lexicalised conceptual combinations.