925 resultados para Semantic Web, Exploratory Search, Recommendation Systems
Resumo:
Web 2.0 und soziale Netzwerke gaben erste Impulse für neue Formen der Online-Lehre, welche die umfassende Vernetzung von Objekten und Nutzern im Internet nachhaltig einsetzen. Die Vielfältigkeit der unterschiedlichen Systeme erschwert aber deren ganzheitliche Nutzung in einem umfassenden Lernszenario, das den Anforderungen der modernen Informationsgesellschaft genügt. In diesem Beitrag wird eine auf dem Konnektivismus basierende Plattform für die Online-Lehre namens “Wiki-Learnia” präsentiert, welche alle wesentlichen Abschnitte des lebenslangen Lernens abbildet. Unter Einsatz zeitgemäßer Technologien werden nicht nur Nutzer untereinander verbunden, sondern auch Nutzer mit dedizierten Inhalten sowie ggf. zugehörigen Autoren und/oder Tutoren verknüpft. Für ersteres werden verschiedene Kommunikations-Werkzeuge des Web 2.0 (soziale Netzwerke, Chats, Foren etc.) eingesetzt. Letzteres fußt auf dem sogenannten “Learning-Hub”-Ansatz, welcher mit Hilfe von Web-3.0-Mechanismen insbesondere durch eine semantische Metasuchmaschine instrumentiert wird. Zum Aufzeigen der praktischen Relevanz des Ansatzes wird das mediengestützte Juniorstudium der Universität Rostock vorgestellt, ein Projekt, das Schüler der Abiturstufe aufs Studium vorbereitet. Anhand der speziellen Anforderungen dieses Vorhabens werden der enorme Funktionsumfang und die große Flexibilität von Wiki-Learnia demonstriert.
Resumo:
Web 2.0 und soziale Netzwerke gaben erste Impulse für neue Formen der Online-Lehre, welche die umfassende Vernetzung von Objekten und Nutzern im Internet nachhaltig einsetzen. Die Vielfältigkeit der unterschiedlichen Systeme erschwert aber deren ganzheitliche Nutzung in einem umfassenden Lernszenario, das den Anforderungen der modernen Informationsgesellschaft genügt. In diesem Beitrag wird eine auf dem Konnektivismus basierende Plattform für die Online-Lehre namens “Wiki-Learnia” präsentiert, welche alle wesentlichen Abschnitte des lebenslangen Lernens abbildet. Unter Einsatz zeitgemäßer Technologien werden nicht nur Nutzer untereinander verbunden, sondern auch Nutzer mit dedizierten Inhalten sowie ggf. zugehörigen Autoren und/oder Tutoren verknüpft. Für ersteres werden verschiedene Kommunikations-Werkzeuge des Web 2.0 (soziale Netzwerke, Chats, Foren etc.) eingesetzt. Letzteres fußt auf dem sogenannten “Learning-Hub”-Ansatz, welcher mit Hilfe von Web-3.0-Mechanismen insbesondere durch eine semantische Metasuchmaschine instrumentiert wird. Zum Aufzeigen der praktischen Relevanz des Ansatzes wird das mediengestützte Juniorstudium der Universität Rostock vorgestellt, ein Projekt, das Schüler der Abiturstufe aufs Studium vorbereitet. Anhand der speziellen Anforderungen dieses Vorhabens werden der enorme Funktionsumfang und die große Flexibilität von Wiki-Learnia demonstriert.
Resumo:
The volume consists of twenty-five chapters selected from among peer-reviewed papers presented at the CELDA (Cognition and Exploratory Learning in the Digital Age) 2013 Conference held in Fort Worth, Texas, USA, in October 2013 and also from world class scholars in e-learning systems, environments and approaches. The following sub-topics are included: Exploratory Learning Technologies (Part I), e-Learning social web design (Part II), Learner communities through e-Learning implementations (Part III), Collaborative and student-centered e-Learning design (Part IV). E-Learning has been, since its initial stages, a synonym for flexibility. While this dynamic nature has mainly been associated with time and space it is safe to argue that currently it embraces other aspects such as the learners’ profile, the scope of subjects that can be taught electronically and the technology it employs. New technologies also widen the range of activities and skills developed in e-Learning. Electronic learning environments have evolved past the exclusive delivery of knowledge. Technology has endowed e-Learning with the possibility of remotely fomenting problem solving skills, critical thinking and team work, by investing in information exchange, collaboration, personalisation and community building.
Resumo:
Lehrvideos erfreuen sich dank aktueller Entwicklungen im Bereich der Online-Lehre (Videoplattformen, MOOCs) auf der einen Seite und einer riesigen Auswahl sowie einer einfachen Produktion und Distribution auf der anderen Seite großer Beliebtheit bei der Wissensvermittlung. Trotzdem bringen Videos einen entscheidenden Nachteil mit sich, welcher in der Natur des Datenformats liegt. So sind die Suche nach konkreten Sachverhalten in einem Video sowie die semantische Aufbereitung zur automatisierten Verknüpfung mit weiteren spezifischen Inhalten mit hohem Aufwand verbunden. Daher werden die lernerfolg-orientierte Selektion von Lehrsegmenten und ihr Arrangement zur auf Lernprozesse abgestimmten Steuerung gehemmt. Beim Betrachten des Videos werden unter Umständen bereits bekannte Sachverhalte wiederholt bzw. können nur durch aufwendiges manuelles Spulen übersprungen werden. Selbiges Problem besteht auch bei der gezielten Wiederholung von Videoabschnitten. Als Lösung dieses Problems wird eine Webapplikation vorgestellt, welche die semantische Aufbereitung von Videos hin zu adaptiven Lehrinhalten ermöglicht: mittels Integration von Selbsttestaufgaben mit definierten Folgeaktionen können auf Basis des aktuellen Nutzerwissens Videoabschnitte automatisiert übersprungen oder wiederholt und externe Inhalte verlinkt werden. Der präsentierte Ansatz basiert somit auf einer Erweiterung der behavioristischen Lerntheorie der Verzweigten Lehrprogramme nach Crowder, die auf den Lernverlauf angepasste Sequenzen von Lerneinheiten beinhaltet. Gleichzeitig werden mittels regelmäßig eingeschobener Selbsttestaufgaben Motivation sowie Aufmerksamkeit des Lernenden nach Regeln der Programmierten Unterweisung nach Skinner und Verstärkungstheorie gefördert. Durch explizite Auszeichnung zusammengehöriger Abschnitte in Videos können zusätzlich die enthaltenden Informationen maschinenlesbar gestaltet werden, sodass weitere Möglichkeiten zum Auffinden und Verknüpfen von Lerninhalten geschaffen werden.
Resumo:
Web-scale knowledge retrieval can be enabled by distributed information retrieval, clustering Web clients to a large-scale computing infrastructure for knowledge discovery from Web documents. Based on this infrastructure, we propose to apply semiotic (i.e., sub-syntactical) and inductive (i.e., probabilistic) methods for inferring concept associations in human knowledge. These associations can be combined to form a fuzzy (i.e.,gradual) semantic net representing a map of the knowledge in the Web. Thus, we propose to provide interactive visualizations of these cognitive concept maps to end users, who can browse and search the Web in a human-oriented, visual, and associative interface.
Resumo:
This paper introduces a novel vision for further enhanced Internet of Things services. Based on a variety of data (such as location data, ontology-backed search queries, in- and outdoor conditions) the Prometheus framework is intended to support users with helpful recommendations and information preceding a search for context-aware data. Adapted from artificial intelligence concepts, Prometheus proposes user-readjusted answers on umpteen conditions. A number of potential Prometheus framework applications are illustrated. Added value and possible future studies are discussed in the conclusion.
Resumo:
OBJECTIVE: To characterize PubMed usage over a typical day and compare it to previous studies of user behavior on Web search engines. DESIGN: We performed a lexical and semantic analysis of 2,689,166 queries issued on PubMed over 24 consecutive hours on a typical day. MEASUREMENTS: We measured the number of queries, number of distinct users, queries per user, terms per query, common terms, Boolean operator use, common phrases, result set size, MeSH categories, used semantic measurements to group queries into sessions, and studied the addition and removal of terms from consecutive queries to gauge search strategies. RESULTS: The size of the result sets from a sample of queries showed a bimodal distribution, with peaks at approximately 3 and 100 results, suggesting that a large group of queries was tightly focused and another was broad. Like Web search engine sessions, most PubMed sessions consisted of a single query. However, PubMed queries contained more terms. CONCLUSION: PubMed's usage profile should be considered when educating users, building user interfaces, and developing future biomedical information retrieval systems.
Resumo:
When viewing web-consumer reviews consumers encounter the reviewers in an anonymous environment. Although their interactions are only virtual they still exchange social information, e.g. often reviewers refer to their proficiency or consumption motives within the review texts. Do these social information harm the viewers’ perception of the recommended products? The present study addresses this question by applying the paradigm of social comparison (Mussweiler, 2003) to web-consumer reviews. In a laboratory experiment with a student sample (n = 120) we manipulated the perceived similarity between reviewer and viewer and the perceived proficiency of the reviewer. A measurement of achievement goals (Elliott & McGregor, 2001) and average number of hours of study prior to the experiment allowed to introduce the reviewer as high [low] in proficiency and similar [dissimilar] in achievement goals. As predicted, the viewer’s evaluation of the recommended products differed as a function of this social information. Contrasting with the reviewer led to devaluing the products recommended by a proficient but dissimilar reviewer. However, against our prediction social comparison with the reviewer did not affect the viewer`s self-evaluation. Whether social information in web-product reviews affects the viewer`s self-evaluation and induces both social comparison processes remains an open question. Future studies aim to address this by manipulating the informational focus of the viewer, rather than the perceived similarity between viewer and reviewer. So far, the present study extends the application of social comparison to consumption environments and contributes to the understanding of the virtual social identity.
Resumo:
Our research project develops an intranet search engine with concept- browsing functionality, where the user is able to navigate the conceptual level in an interactive, automatically generated knowledge map. This knowledge map visualizes tacit, implicit knowledge, extracted from the intranet, as a network of semantic concepts. Inductive and deductive methods are combined; a text ana- lytics engine extracts knowledge structures from data inductively, and the en- terprise ontology provides a backbone structure to the process deductively. In addition to performing conventional keyword search, the user can browse the semantic network of concepts and associations to find documents and data rec- ords. Also, the user can expand and edit the knowledge network directly. As a vision, we propose a knowledge-management system that provides concept- browsing, based on a knowledge warehouse layer on top of a heterogeneous knowledge base with various systems interfaces. Such a concept browser will empower knowledge workers to interact with knowledge structures.
Resumo:
Software developers are often unsure of the exact name of the method they need to use to invoke the desired behavior in a given context. This results in a process of searching for the correct method name in documentation, which can be lengthy and distracting to the developer. We can decrease the method search time by enhancing the documentation of a class with the most frequently used methods. Usage frequency data for methods is gathered by analyzing other projects from the same ecosystem - written in the same language and sharing dependencies. We implemented a proof of concept of the approach for Pharo Smalltalk and Java. In Pharo Smalltalk, methods are commonly searched for using a code browser tool called "Nautilus", and in Java using a web browser displaying HTML based documentation - Javadoc. We developed plugins for both browsers and gathered method usage data from open source projects, in order to increase developer productivity by reducing method search time. A small initial evaluation has been conducted showing promising results in improving developer productivity.
Resumo:
Quality data are not only relevant for successful Data Warehousing or Business Intelligence applications; they are also a precondition for efficient and effective use of Enterprise Resource Planning (ERP) systems. ERP professionals in all kinds of businesses are concerned with data quality issues, as a survey, conducted by the Institute of Information Systems at the University of Bern, has shown. This paper demonstrates, by using results of this survey, why data quality problems in modern ERP systems can occur and suggests how ERP researchers and practitioners can handle issues around the quality of data in an ERP software Environment.
Resumo:
Interlinking text documents with Linked Open Data enables the Web of Data to be used as background knowledge within document-oriented applications such as search and faceted browsing. As a step towards interconnecting the Web of Documents with the Web of Data, we developed DBpedia Spotlight, a system for automatically annotating text documents with DBpedia URIs. DBpedia Spotlight allows users to congure the annotations to their specic needs through the DBpedia Ontology and quality measures such as prominence, topical pertinence, contextual ambiguity and disambiguation condence. We compare our approach with the state of the art in disambiguation, and evaluate our results in light of three baselines and six publicly available annotation systems, demonstrating the competitiveness of our system. DBpedia Spotlight is shared as open source and deployed as a Web Service freely available for public use.
Resumo:
Semantic technologies have become widely adopted in recent years, and choosing the right technologies for the problems that users face is often a difficult task. This paper presents an application of the Analytic Network Process for the recommendation of semantic technologies, which is based on a quality model for semantic technologies. Instead of relying on expert-based comparisons of alternatives, the comparisons in our framework depend on real evaluation results. Furthermore, the recommendations in our framework derive from user quality requirements, which leads to better recommendations tailored to users’ needs. This paper also presents an algorithm for pairwise comparisons, which is based on user quality requirements and evaluation results.
Resumo:
Current methods and tools that support Linked Data publication have mainly focused so far on static data, without considering the growing amount of streaming data available on the Web. In this paper we describe a case study that involves the publication of static and streaming Linked Data for bike sharing systems and related entities. We describe some of the challenges that we have faced, the solutions that we have explored, the lessons that we have learned, and the opportunities that lie in the future for exploiting Linked Stream Data.