979 resultados para Selective ganglion-cells
Resumo:
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) play a central role in neuronal differentiation. However, Ca(2+) signaling in this process remains poorly understood and it is unknown whether embryonic and adult stem cells share the same signaling pathways. To clarify this issue, neuronal differentiation was analyzed in two cell lines: embryonic P19 carcinoma stem cells (CSCs) and adult murine bone-marrow mesenchymal stem cells (MSC). We studied Ca(2+) release from the endoplasmic reticulum via intracellular ryanodine-sensitive (RyR) and IP(3)-sensitive (IP(3)R) receptors. We observed that caffeine, a RyR agonist, induced a [Ca(2+)](i) response that increased throughout neuronal differentiation. We also demonstrated a functional coupling between RyRs and L-but not with N-, P-, or Q-type Ca(v)1 Ca(2+) channels, both in embryonal CSC and adult MSC. We also found that agonists of L-type channels and of RyRs increase neurogenesis and neuronal differentiation, while antagonists of these channels have the opposite effect. Thus, our data demonstrate that in both cell lines RyRs control internal Ca(2+) release following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels. This study shows that both in embryonal CSC and adult MSC [Ca(2+)](i) is controlled by a common pathway, indicating that coupling of L-type Ca(2+) channels and RyRs may be a conserved mechanism necessary for neuronal differentiation.
Resumo:
This work describes the coupling of a biomimetic sensor to a flow injection system for the sensitive determination of paracetamol. The sensor was prepared as previously described in the literature (M. D. P. T. Sotomayor, A. Sigoli, M. R. V. Lanza, A. A. Tanaka and L. T. Kubota, J. Braz. Chem. Soc., 2008, 19, 734) by modifying a glassy carbon electrode surface with a Nafion (R) membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz), a biomimetic catalyst of the P450 enzyme. The performance of the sensor for paracetamol detection was investigated and optimized in a flow injection system (FIA) using a wall jet electrochemical cell. Under optimized conditions a wide linear response range (1.0 x 10(-5) to 5.0 x 10(-2) mol L(-1)) was obtained, with a sensitivity of 2579 (+/- 129) mu A L mu mol(-1). The detection and quantification limits of the sensor for paracetamol in the FIA system were 1.0 and 3.5 mu mol L(-1), respectively. The analytical frequency was 51 samples h(-1), and over a period of five days (320 determinations) the biosensor maintained practically the same response. The system was successfully applied to paracetamol quantification in seven pharmaceutical formulations and in water samples from six rivers in Sao Paulo State, Brazil.
Resumo:
There are controversies about the use of local anesthetics during balloon compression for trigeminal neuralgia (TN) as a protective factor for cardiovascular events. The objective of this study was to investigate cardiovascular parameters (blood pressure and heart rate [HR]) of patients that underwent trigeminal balloon compression with local anesthetics compared to a control group (placebo). This is a randomized controlled study; 55 patients were randomized into two groups: study (deep sedation and trigeminal block with 0.8-mL lidocaine 2%) and control group (deep sedation and trigeminal injection of 0.8-mL saline). Blood pressure and HR were measured in five distinct moments: preoperative, during puncture for local anesthesia/placebo, during puncture with the catheter, during balloon compression, and final evaluation. Statistical analysis was performed with Pearson`s chi (2) and McNemar tests and the analysis of variance for repetitive measures. The means of systolic and diastolic blood pressures (SBP and DBP, respectively) were higher in the control group when compared to the study group at the evaluation during puncture with the catheter (p < 0.001) and balloon compression (p < 0.001 and p = 0.018 for DBP and SBP, respectively). There was an increase in the HR in the control group during the procedure (p = 0.017). The use of local anesthetics during the trigeminal balloon compression for TN can have a preventive role for the risk of cardiovascular events.
Resumo:
Glypican-3 (GPC3) is a proteoglycan involved in proliferation and cell survival. Several reports demonstrated that GPC3 is downregulated in some tumors, such as breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their invasive and metastatic capacities, associated with a decrease of their motility and an increase of their cell death. We demonstrated that GPC3 inhibits canonical Wnt signaling, as well as it activates non canonical pathway. Now, we identified signaling pathways responsible for the pro-apoptotic role of GPC3 in LM3 cells. We found for the first time that GPC3 inhibits the PI3K/Akt anti-apoptotic pathway while it stimulates the p38MAPK stress-activated one. We report a concomitant modulation of CDK inhibitors as well as of pro- and anti-apoptotic molecules. Our results provide new clues regarding the mechanism involved in the modulation induced by GPC3 of mammary tumor cell growth and survival.
Resumo:
Thyroid hormone receptor beta (TR beta also listed as THRB oil the MGI Database)-selective agonists activate brown adipose tissue (BAT) thermogenesis, while only minimally affecting cardiac activity or lean body mass. Here, we tested the hypothesis that daily administration of the TR beta agonist GC-24 prevents the metabolic alterations associated with a hypercaloric diet. Rats were placed on a high-fat diet and after a month exhibited increased body weight (BW) and adiposity, fasting hyperglycemia and glucose intolerance, increased plasma levels of triglycerides, cholesterol, nonesterified Fatty acids and interleukin-6. While GC-24 administration to these animals did not affect food ingestion or modified the progression of BW gain, it did increase energy, g the increase in adiposity Without expenditure, eliminating causing cardiac hypertrophy Fasting hyperglycemia remained unchanged, but treatment with GC-24 improved glucose I tolerance by increasing insulin Sensitivity and also normalized plasma triglyceride levels. plasma cholesterol levels were only Partially normalized and liver cholesterol content remained high in the GC-24-treated animals. Gene expression in liver, skeletal muscle, and white adipose tissue was only minimally affected by treatment with GC-24, with the main target being BAT In conclusion, during high-fat feeding treatment with the TR beta-selective agonist, GC-24 only partially improves metabolic control probably as a result Of accelerating the resting metabolic rate. Journal of Endocrinology (2009) 203, 291-299
Resumo:
In the plasma kallikrein-kinin system, it has been shown that when plasma prekallikrein (PM) and high molecular weight kininogen (HK) assemble on endothelial cells, plasma kallikrein (huPK) becomes available to cleave HK, releasing bradykinin, a potent mediator of the inflammatory response. Because the formation of soluble glycosaminoglycans occurs concomitantly during the inflammatory processes, the effect of these polysaccharides on the interaction of HK on the cell surface or extracellular matrix (ECM) of two endothelial cell lines (ECV304 and RAEC) was investigated. In the presence of Zn(+2), HK binding to the surface or ECM of RAEC was abolished by heparin; reduced by heparan sulfate, keratan sulfate, chondroitin 4-sulfate or dermatan sulfate; and not affected by chondroitin 6-sulfate. By contrast, only heparin reduced HK binding to the ECV304 cell surface or ECM. Using heparin-correlated molecules such as low molecular weight dextran sulfate, low molecular weight heparin and N-desulfated heparin, we suggest that these effects were mainly dependent on the charge density and on the N-sulfated glucosamine present in heparin. Surprisingly, PM binding to cell- or ECM-bound-HK and PM activation was not modified by heparin. However, the hydrolysis of HK by huPK, releasing BK in the fluid phase, was augmented by this glycosaminoglycan in the presence of Zn(2+). Thus, a functional dichotomy exists in which soluble glycosaminoglycans may possibly either increase or decrease the formation of BK. In conclusion, glycosaminoglycans that accumulated in inflammatory fluids or used as a therapeutic drug (e.g., heparin) could act as pro- or anti-inflammatory mediators depending on different factors within the cell environment. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Background information. DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4,6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.
Resumo:
Active lymphocytes (LY) and macrophages (M Phi) are involved in the pathophysiology of rheumatoid arthritis (RA) Due to its anti-inflammatory effect. physical exercise may be beneficial in RA by acting on the immune system (IS) Thus, female Wistar rats with type II collagen-induced arthritis (CIA) were submitted to swimming training (6 weeks. 5 days/week. 60 min/day) and some biochemical and immune parameters, such as the metabolism of glucose and glutamine and function of LY and M. were evaluated In addition, plasma levels of some hormones and of interleukin-2 (IL-2) were also determined Results demonstrate that CIA increased lymphocyte proliferation (1.9- and 1 7-fold, respectively, in response to concanavalin A (ConA) and lipopolysaccharide (LPS)), as well as macrophage H(2)O(2) production (1 6-fold), in comparison to control Exercise training prevented the activation of immune cells, induced by CIA. and established a pattern of substrate utilization similar to that described as normal for these cells. Exercise also promoted an elevation of plasma levels of corticosterone (22 2%), progesterone (1 7-fold) and IL-2 (2 6-fold) Our data suggest that chronic exercise is able to counterbalance the effects of CIA on cells of the IS. reinforcing the proposal that the benefits of exercise may not be restricted to aerobic capacity and/or strength improvement Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
During the first half of 2006 the city of Sao Paulo suffered three series of violent attacks against the security forces, civilians, and the government. The violent campaign also included a massive rebellion in prisons and culminated in the kidnapping of a journalist and the broadcast of a manifesto from the criminal organization PCC threatening the police and the government. Right after, the main device used to contain organized crime in the prisons was declared unconstitutional. This episode represents a prototypical example of the use of media-focused terrorism by organized crime for projection into the political communication arena.
Resumo:
FUNDAMENTS: The lethality of squamous cell carcinomas (SCC) of the skin is considered low. SCC in the mouth is usually associated with poor prognosis. Current evidence suggests that mast cells in the normal tissue contribute to the tumorigenesis of SCC, probably by promoting angiogenesis. OBJECTIVE: The aim of this study was to compare the concentration of mast cells in SCC of the mouth and skin and evaluate whether there is a correlation with the degree of differentiation of these tumors. MATERIAL AND METHODS: Thirty cases of SCC of the skin and 34 of the mouth were investigated. Toluidine blue staining was used to identify mast cells in blocks containing the central portion of the neoplasm. RESULTS: A concentration of between 0 and 10 mast cells was found in one single case of SCC of the skin and there were no cases of SCC of the mouth with concentrations of mast cells in the tumor >201. In the majority of cases of SCC of the mouth (47%; n=16), mast cell concentration was between 0 and 10, with a concentration >51 mast cells in 80% of cases of SCC of the skin. All the cases of SCC of the mouth with a concentration of mast cells between 100 and 200 and 80% of those with a concentration of 51-99 were located on the lip. The concentration of mast cells was unrelated to the degree of differentiation of the tumor. CONCLUSION: The concentration of mast cells is lower in SCC of the mouth except when the tumor is located on the lip. This may reflect a lower need for cell activation in the microenvironment to improve vascularization in oral cancer.
Resumo:
Evidence demonstrates that sympathetic nervous system (SNS) activation causes osteopenia via beta(2)-adrenoceptor (beta(2)-AR) signaling. Here we show that female mice with chronic sympathetic hyperactivity owing to double knockout of adrenoceptors that negatively regulate norepinephrine release, alpha(2A)-AR and alpha(2C)-AR(alpha(2A)/alpha(2C)-ARKO), present an unexpected and generalized phenotype of high bone mass with decreased bone resorption and increased formation. In alpha(2A)/alpha(2C)-ARKO versus wild-type (WT) mice, micro-computed tomographic (mu CT) analysis showed increased, better connected, and more plate-shaped trabeculae in the femur and vertebra and increased cortical thickness in the vertebra, whereas biomechanical analysis showed increased tibial and femoral strength. Tibial mRNA expression of tartrate-resistant acid phosphatase (TRACP) and receptor activator of NF-kappa B (RANK), which are osteoclast-related factors, was lower in knockout (KO) mice. Plasma leptin and brain mRNA levels of cocaine amphetamine-regulated transcript (CART), which are factors that centrally affect bone turnover, and serum levels of estradiol were similar between mice strains. Tibial beta(2)-AR mRNA expression also was similar in KO and WT littermates, whereas alpha(2A)-, alpha(2B)- and alpha(2C)-AR mRNAs were detected in the tibia of WT mice and in osteoblast-like MC3T3-E1 cells. By immunohistochemistry, we detected alpha(2A)-, alpha(2B)-, alpha(2C)- and beta(2)-ARs in osteoblasts, osteoclasts, and chondrocytes of 18.5-day-old mouse fetuses and 35-day-old mice. Finally, we showed that isolated osteoclasts in culture are responsive to the selective alpha(2)-AR agonist clonidine and to the nonspecific alpha-AR antagonist phentolamine. These findings suggest that beta(2)-AR is not the single adrenoceptor involved in bone turnover regulation and show that alpha(2)-AR signaling also may mediate the SNS actions in the skeleton. (c) 2011 American Society for Bone and Mineral Research.
Resumo:
Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.
Resumo:
Protein kinase C beta II (PKC beta II) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted overexpression of PKC beta II in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKC beta II in HF development. Using a post-myocardial infarction (MI) model of HF in rats, we determined the benefit of chronic inhibition of PKC beta II on the progression of HF over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKC beta II selective inhibitor (beta IIV5-3 conjugated to TAT(47-57) carrier peptide) (3 mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT(47-57) carrier peptide alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, haematoxylin and eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKC beta II inhibitor. Further, a 90% decrease in active TGF beta 1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKC beta II attenuates cardiac remodelling mediated by the TGF-SMAD signalling pathway. Therefore, sustained selective inhibition of PKC beta II in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodelling.
Resumo:
Ticks are blood-feeding arthropods that secrete immunomodulatory molecules through their saliva to antagonize host inflammatory and immune responses. As dendritic cells (DCs) play a major role in host immune responses, we studied the effects of Rhipicephalus sanguineus tick saliva on DC migration and function. Bone marrow-derived immature DCs pre-exposed to tick saliva showed reduced migration towards macrophage inflammatory protein (MIP)-1 alpha, MIP-1 beta and regulated upon activation, normal T cell expressed and secreted (RANTES) chemokines in a Boyden microchamber assay. This inhibition was mediated by saliva which significantly reduced the percentage and the average cell-surface expression of CC chemokine receptor CCR5. In contrast, saliva did not alter migration of DCs towards MIP-3 beta, not even if the cells were induced for maturation. Next, we evaluated the effect of tick saliva on the activity of chemokines related to DC migration and showed that tick saliva per se inhibits the chemotactic function of MIP-1 alpha, while it did not affect RANTES, MIP-1 beta and MIP-3 beta. These data suggest that saliva possibly reduces immature DC migration, while mature DC chemotaxis remains unaffected. In support of this, we have analyzed the percentage of DCs on mice 48 h after intradermal inoculation with saliva and found that the DC turnover in the skin was reduced compared with controls. Finally, to test the biological activity of the saliva-exposed DCs, we transferred DCs pre-cultured with saliva and loaded with the keyhole limpet haemocyanin (KLH) antigen to mice and measured their capacity to induce specific T cell cytokines. Data showed that saliva reduced the synthesis of both T helper (Th)1 and Th2 cytokines, suggesting the induction of a non-polarised T cell response. These findings propose that the inhibition of DCs migratory ability and function may be a relevant mechanism used by ticks to subvert the immune response of the host. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LIPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host`s immune response, possibly favouring susceptibility to tick infestations. (C) 2009 Elsevier B.V. All rights reserved.