985 resultados para Seed protein
Resumo:
Background: This study examined the association of -866G/A, Ala55Val, 45bpI/D, and -55C/T polymorphisms at the uncoupling protein (UCP) 3-2 loci with type 2 diabetes in Asian Indians. Methods: A case-control study was performed among 1,406 unrelated subjects (487 with type 2 diabetes and 919 normal glucose-tolerant NGT]), chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in Southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism and direct sequencing. Haplotype frequencies were estimated using an expectation-maximization algorithm. Linkage disequilibrium was estimated from the estimates of haplotypic frequencies. Results: The genotype (P = 0.00006) and the allele (P = 0.00007) frequencies of Ala55Val of the UCP2 gene showed a significant protective effect against the development of type 2 diabetes. The odds ratios (adjusted for age, sex, and body mass index) for diabetes for individuals carrying Ala/Val was 0.72, and that for individuals carrying Val/Val was 0.37. Homeostasis insulin resistance model assessment and 2-h plasma glucose were significantly lower among Val-allele carriers compared to the Ala/Ala genotype within the NGT group. The genotype (P = 0.02) and the allele (P = 0.002) frequencies of -55C/T of the UCP3 gene showed a significant protective effect against the development of diabetes. The odds ratio for diabetes for individuals carrying CT was 0.79, and that for individuals carrying TT was 0.61. The haplotype analyses further confirmed the association of Ala55Val with diabetes, where the haplotypes carrying the Ala allele were significantly higher in the cases compared to controls. Conclusions: Ala55Val and -55C/T polymorphisms at the UCP3-2 loci are associated with a significantly reduced risk of developing type 2 diabetes in Asian Indians.
Resumo:
Monoclonal antibodies raised against human serum retinol-binding protein (hRBP) were used as probes for the study of the antigenic determinants of hRBP and those shared with the same protein from other species. The antibodies could be classified into four distinct groups and react with the homologous proteins from the rat as well as the rabbit sera. Three of these antibodies recognize sequential or continuous epitopes while the remaining antibody is directed against a discontinuous or conformational epitope. By chemical cleavage with cyanogen bromide, the domains recognized by the monoclonal antibodies could be delineated. By solid-phase synthetic approach, the core sequences recognized by two of these monoclonal antibodies were identified to amino acid sequences 45–51 and 128–131 of the primary amino acid sequence of hRBP.
Resumo:
Lipeä on vahva emäs, jonka on havaittu lisäävän hemiselluloosan ja ligniinin hydrolyysiä pötsissä. Näin ollen lipeäkäsittelyllä on mahdollista korvata viljan mekaaninen litistys ja jauhatus. Seosrehuruokinnalla, jonka osana on lipeäkäsitelty vilja, on mahdollista vähentää liiallisesta tärkkelyksestä aiheutuvia metabolisia ongelmia pötsissä. Tämän tutkielman tarkoituksena oli selvittää lipeäkäsitellyn vehnän vaikutusta lypsylehmien syöntiin ja tuotokseen ad libitum seosrehuruokinnoilla. Ruokinnoissa korvattiin kuivaa murskattua vehnää asteittain kokonaisella lipeäkäsitellyllä vehnällä. Kontrollina oli perinteisesti käytetty kuiva, murskattu ohra-kaura seos. Koe tehtiin Ruotsin maatalousyliopiston (SLU) maataloustieteiden laitoksella Uumajassa. Koe alkoi syyskuussa ja päättyi joulukuussa 2010. Kokeessa oli 17 useamman kerran poikinutta lehmää ja 6 ensikkoa (Ruotsin punainen -rotu). Lehmät olivat lämpimässä pihattonavetassa, jossa seosrehun syöntiä mitattiin vaakakuppien avulla. Koekäsittelyt olivat murskattu ohra-kaura seos (1:1), murskattu kuiva vehnä (1:0), murskatun kuivan vehnän ja kokonaisen lipeävehnän seos (1:1) ja kokonainen lipeävehnä (1:0). Ruokintojen kuiva-ainepitoisuudeksi asetettiin 370 g/kg ja raakavalkuaispitoisuudeksi 180 g/kg kuiva-ainetta. Näennäinen ravintoaineen sulavuus määritettiin happoon liukenemattoman tuhkan avulla. Typen hyväksikäyttöä arvioitiin laskennallisen typpitaseen avulla. Koe toteutettiin 4x4 latinalaisen neliön koemallin mukaisesti ja käsittelyjen väliset tilastolliset erot testattiin kontrastien avulla. Kuiva-aineen (PQ=0,02) ja orgaanisen aineen (PQ=0,02) syönnit lisääntyivät, samalla kun niiden sulavuudet paranivat korvattaessa puolet kuivasta vehnästä lipeävehnällä. Ruokintojen välillä ei ollut tilastollisesti merkitsevää eroa maitotuotoksessa eikä energiakorjatussa maitotuotoksessa. Maidon rasvatuotos lisääntyi vähän (PQ=0,04) ja rasvapitoisuus selvästi (PQ=0,004), kun kuivasta vehnästä korvattiin puolet lipeävehnällä. Kun kaikki kuiva vehnä korvattiin lipeävehnällä, maidon valkuaispitoisuus väheni (PL<0,001). Samoin kävi maidon ureapitoisuudelle (PL=0,002). Lipeäkäsittely ei tuottanut tässä kokeessa taloudellisesti kannattavaa tulosta, sillä maidon valkuaispitoisuus väheni ja syönti lisääntyi maitotuotoksen pysyessä samana. Vehnäruokinnoista paras tuotosvaste saatiin kuivan vehnän ja lipeävehnän seoksella.
Resumo:
The removal of noncoding sequences, or introns, from the eukaryotic messenger RNA precursors is catalyzed by a ribonucleoprotein complex known as the spliceosome. In most eukaryotes, two distinct classes of introns exist, each removed by a specific type of spliceosome. The major, U2-type introns account for over 99 % of all introns, and are almost ubiquitous. The minor, U12-type introns are found in most but not all eukaryotes, and reside in conserved locations in a specific set of genes. Due to their slow excision rates, the U12-type introns are expected to be involved in the regulation of the genes containing them by inhibiting the maturation of the messenger RNAs. However, little information is currently available on how the activity of the U12-dependent spliceosome itself is regulated. The levels of many known splicing factors are regulated through unproductive alternative splicing events, which lead to inclusion of premature STOP codons, targeting the transcripts for destruction by the nonsense-mediated decay pathway. These alternative splice sites are typically found in highly conserved sequence elements, which also contain binding sites for factors regulating the activation of the splice sites. Often, the activation is achieved by binding of products of the gene in question, resulting in negative feedback loops. In this study, I show that U11-48K, a protein factor specific to the minor spliceosome, specifically recognizes the U12-type 5' splice site sequence, and is essential for proper function of the minor spliceosome. Furthermore, the expression of U11-48K is regulated through a feedback mechanism, which functions through conserved sequence elements that activate alternative splicing and nonsense-mediated decay. This mechanism is conserved from plants to animals, highlighting both the importance and early origin of this mechanism in regulating splicing factors. I also show that the feedback regulation of U11-48K is counteracted by a component of the major spliceosome, the U1 small nuclear ribonucleoprotein particle, as well as members of the hnRNP F/H protein family. These results thus suggest that the feedback mechanism is finely tuned by multiple factors to achieve precise control of the activity of the U12-dependent spliceosome.
Resumo:
Sesbania mosaic virus (SeMV) is a single-stranded positive-sense RNA plant virus belonging to the genus Sobemovirus. The movement protein (MP) encoded by SeMV ORF1 showed no significant sequence similarity with MPs of other genera, but showed 32% identity with the MP of Southern bean mosaic virus within the Sobemovirus genus. With a view to understanding the mechanism of cell-to-cell movement in sobemoviruses, the SeMV MP gene was cloned, over-expressed in Escherichia coli and purified. Interaction of the recombinant MP with the native virus (NV) was investigated by ELISA and pull-down assays. It was observed that SeMV MP interacted with NV in a concentration- and pH-dependent manner. Analysis of N- and C-terminal deletion mutants of the MP showed that SeMV MP interacts with the NV through the N- terminal 49 amino acid segment. Yeast two-hybrid assays confirmed the in vitro observations, and suggested that SeMV might belong to the class of viruses that require MP and NV/coat protein for cell-to-cell movement.
Resumo:
Treatment with diallyl disulfide, a constituent of garlic oil, irreversibly inactivated microsomal and a soluble 50 kDa form of HMG-CoA reductase. No radioactivity was found to be protein-bound on treating the soluble enzyme with [35S]diallyl disulfide, indicating the absence of the mixed disulfide of the type allyl-S-S-protein. SDS-PAGE and Western blot analyses of the diallyl-disulfide-treated protein showed no traces of the dimer of the type protein-S-S-protein, but clearly indicated BME-reversible increased mobility, as expected of an intramolecular protein disulfide. The sulfhydryl groups, as measured by alkylation with iodo[2-14C]acetic acid, were found to decrease in the diallyl-disulfide-treated enzyme protein. Tryptic peptide analysis also gave support for the possible presence of disulfide-containing peptides in such a protein. It appears that diallyl disulfide inactivated HMG-CoA reductase by forming an internal protein disulfide that became inaccessible for reduction by DTT, and thereby retaining the inactive state of the enzyme.
Resumo:
Sesbania mosaic virus (SMV) is a plant virus infecting Sesbania grandiflora plants in Andhra Pradesh, India. Amino acid sequence of the tryptic peptides of SMV coat protein were determined using a gas phase sequenator. These sequences showed identical amino acids at 69% of the positions when aligned with the corresponding residues of southern bean mosaic virus (SBMV).Crystals diffracting to better than 3 Å resolution were obtained by precipitating the virus with ammonium sulphate. The crystals belonged to rhombohedral space group R3 with α = 291·4 Å and α = 61·9°. Three-dimensional X-ray diffraction data on these crystals were collected to a resolution of 4·7 Å, using a Siemens-Nicolet area detector system. Self-rotation function studies revealed the icosahedral symmetry of the virus particles, as well as their precise orientation in the unit cell. Cross-rotation function and modelling studies with SBMV showed that it is a valid starting model for SMV structure determination. Low resolution phases computed using a polyalanine model of SBMV were subjected to refinement and extension by real-space electron density averaging and solvent flattening. The final electron density map revealed a polypeptide fold similar to SBMV. The single disulphide bridge of SBMV coat protein is retained in SMV. Four icosahedrally independent cation binding sites have been tentatively identified. Three of these sites, related by a quasi threefold axis, are also found in SBMV. The fourth site is situated on the quasi threefold axis. Aspartic acid residues, which replace Ile218 of SBMV from the quasi threefold-related subunits are suitable ligands to the cation at this site
Resumo:
Background: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. Methodology/Principal Findings: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), beta-galactosidase (beta-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational upregulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. Conclusions/Significance: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium.
Resumo:
Sesbania mosaic virus (SeMV) is a single strand positive-sense RNA plant virus that belongs to the genus Sobemovirus. The mechanism of cell-to-cell movement in sobemoviruses has not been well studied. With a view to identify the viral encoded ancillary proteins of SeMV that may assist in cell-to-cell movement of the virus, all the proteins encoded by SeMV genome were cloned into yeast Matchmaker system 3 and interaction studies were performed. Two proteins namely, viral protein genome linked (VPg) and a 10-kDa protein (P10) c v gft encoded by OFR 2a, were identified as possible interacting partners in addition to the viral coat protein (CP). Further characterization of these interactions revealed that the movement protein (MP) recognizes cognate RNA through interaction with VPg, which is covalently linked to the 59 end of the RNA. Analysis of the deletion mutants delineated the domains of MP involved in the interaction with VPg and P10. This study implicates for the first time that VPg might play an important role in specific recognition of viral genome by MP in SeMV and shed light on the possible role of P10 in the viral movement.
Resumo:
A strategy for the modular construction of synthetic protein mimics based on the ability non-protein amino acids to act as stereochemical directors of polypeptide chain folding, is described. The use of alpha-aminoisobutyric acid (Aib) to construct stereochemically rigid helices has been exemplified by crystallographic and spectroscopic studies of several apolar peptides, ranging in length from seven to sixteen residues. The problem of linker design in elaborating alpha,alpha motifs has been considered. Analysis of protein crystal structure data provides a guide to choosing linking sequences. Attempts at constructing linked helical motifs using linking Gly-Pro segments have been described. The use of flexible linkers, like epsilon-aminocaproic acid has been examined and the crystallographic and solution state analysis of a linked helix motif has been presented. The use of bulky sidechain modifications on a helical scaffold, as a means of generating putative binding sites has been exemplified by a crystal structure of a peptide packed in a parallel zipper arrangement.
Resumo:
Plants exhibit certain intra-fruit positional patterns in the development of seeds. These patterns have been generally interpreted to be a consequence of resource and fertilization gradients. However, such positional patterns might also be shaped by the 'neighbour effect', wherein formation and development of a seed at any position might positively or negatively influence those of other seeds in the neighbourhood. In this article, we examine the role of such neighbour effect in shaping the positional pattern of seeds in the pods of Erythrina suberosa. The results suggest the existence of a positive neighbour effect leading to a higher frequency of seeds in contiguous positions.
Resumo:
Kinetic data on inhibition of protein synthesis in thymocyte by three abrins and ricin have been obtained. The intrinsic efficiencies of A chains of four toxins to inactivate ribosomes, as analyzed by k1-versus-concentration plots were abrin II, III > ricin > abrin I. The lag times were 90, 66, 75 and 105 min at a 0.0744 nM concentration of each of abrin I, II, III and ricin, respectively. To account for the observed differences in the dose-dependent lag time, functional and structural variables of toxins such as binding efficiency of B chains to receptors and low-pH-induced structural alterations have been analyzed. The association constants obtained by stopped flow studies showed that abrin-I (4.13 × 105 M−1 s−1) association with putative receptor (4-methylumbelliferyl-α-D-galactoside) is nearly two times more often than abrin III (2.6 × 105 M−1 s−1) at 20°C. Equillibrium binding constants of abrin I and II to thymocyte at 37°C were 2.26 × 107 M−1 and 2.8 × 107 M−1 respectively. pH-induced structural alterations as studied by a parallel enhancement in 8-anilino-L-naphthalene sulfonate fluorescence revealed a high degree of qualitative similarity. These results taken with a nearly identical concentration-independent lag time (minimum lag of 41–42 min) indicated that the binding efficiencies and internalization efficiencies of these toxins are the same and that the observed difference in the dose-dependent lag time is causally related to the proposed processing event. The rates of reduction of inter-subunit disulfide bond, an obligatory step in the intoxication process, have been measured and compared under a variety of conditions. Intersubunit disulfide reduction of abrin I is fourfold faster than that of abrin II at pH 7.2. The rate of disulfide reduction in abrin I could be decreased 1 I-fold by adding lactose, compared to that without lactose. The observed differences in the efficiencies of A chains, the dose-dependent lag period, the modulating effect of lactose on the rates of disulfide reduction and similarity in binding properties make the variants a valuable tool to probe the processing events in toxin transport in detail.
Resumo:
Molecular Dynamics (MD) simulations provide an atomic level account of the molecular motions and have proven to be immensely useful in the investigation of the dynamical structure of proteins. Once an MD trajectory is obtained, specific interactions at the molecular level can be directly studied by setting up appropriate combinations of distance and angle monitors. However, if a study of the dynamical behavior of secondary structures in proteins becomes important, this approach can become unwieldy. We present herein a method to study the dynamical stability of secondary structures in proteins, based on a relatively simple analysis of backbone hydrogen bonds. The method was developed for studying the thermal unfolding of beta-lactamases, but can be extended to other systems and adapted to study relevant properties.