992 resultados para Saxophone with orchestra
Resumo:
The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.
Resumo:
This thesis presents an original approach to parametric speech coding at rates below 1 kbitsjsec, primarily for speech storage applications. Essential processes considered in this research encompass efficient characterization of evolutionary configuration of vocal tract to follow phonemic features with high fidelity, representation of speech excitation using minimal parameters with minor degradation in naturalness of synthesized speech, and finally, quantization of resulting parameters at the nominated rates. For encoding speech spectral features, a new method relying on Temporal Decomposition (TD) is developed which efficiently compresses spectral information through interpolation between most steady points over time trajectories of spectral parameters using a new basis function. The compression ratio provided by the method is independent of the updating rate of the feature vectors, hence allows high resolution in tracking significant temporal variations of speech formants with no effect on the spectral data rate. Accordingly, regardless of the quantization technique employed, the method yields a high compression ratio without sacrificing speech intelligibility. Several new techniques for improving performance of the interpolation of spectral parameters through phonetically-based analysis are proposed and implemented in this research, comprising event approximated TD, near-optimal shaping event approximating functions, efficient speech parametrization for TD on the basis of an extensive investigation originally reported in this thesis, and a hierarchical error minimization algorithm for decomposition of feature parameters which significantly reduces the complexity of the interpolation process. Speech excitation in this work is characterized based on a novel Multi-Band Excitation paradigm which accurately determines the harmonic structure in the LPC (linear predictive coding) residual spectra, within individual bands, using the concept 11 of Instantaneous Frequency (IF) estimation in frequency domain. The model yields aneffective two-band approximation to excitation and computes pitch and voicing with high accuracy as well. New methods for interpolative coding of pitch and gain contours are also developed in this thesis. For pitch, relying on the correlation between phonetic evolution and pitch variations during voiced speech segments, TD is employed to interpolate the pitch contour between critical points introduced by event centroids. This compresses pitch contour in the ratio of about 1/10 with negligible error. To approximate gain contour, a set of uniformly-distributed Gaussian event-like functions is used which reduces the amount of gain information to about 1/6 with acceptable accuracy. The thesis also addresses a new quantization method applied to spectral features on the basis of statistical properties and spectral sensitivity of spectral parameters extracted from TD-based analysis. The experimental results show that good quality speech, comparable to that of conventional coders at rates over 2 kbits/sec, can be achieved at rates 650-990 bits/sec.
Resumo:
This thesis addresses the contemporary issue of the control, restoration and potential for reuse of State Government-owned heritage properties with commercial potential. It attempts to reconcile the sometimes competing interests of the range of stakeholders in such properties, particularly those seeking to maximise economic performance and return on one hand and community expectations for heritage preservation and exhibition on the other. The matters are approached principally from the Government's position as asset owner/manager. It includes research into a number of key elements - including statutory, physical and economic parameters and an analysis of the legitimate requirements of all stakeholders. The thesis also recognises the need for innovation in approach and for the careful structuring and pre-planning of proposals on a project-by-project basis. On the matter of innovation, four case studies are included in the thesis to exhibit some approaches and techniques that have already been employed in addressing these issues. From this research base, a series of deductions at both a macro and micro level are established and a model for a rational decision-making process for dealing with such projects is developed as a major outcome of the work. Finally, the general model is applied to a specific project, the currently unused Port Office heritage site in the Brisbane Central Business District.
Resumo:
Since the 1960s, the value relevance of accounting information has been an important topic in accounting research. The value relevance research provides evidence as to whether accounting numbers relate to corporate value in a predicted manner (Beaver, 2002). Such research is not only important for investors but also provides useful insights into accounting reporting effectiveness for standard setters and other users. Both the quality of accounting standards used and the effectiveness associated with implementing these standards are fundamental prerequisites for high value relevance (Hellstrom, 2006). However, while the literature comprehensively documents the value relevance of accounting information in developed markets, little attention has been given to emerging markets where the quality of accounting standards and their enforcement are questionable. Moreover, there is currently no known research that explores the association between level of compliance with International Financial Reporting Standards (IFRS) and the value relevance of accounting information. Motivated by the lack of research on the value relevance of accounting information in emerging markets and the unique institutional setting in Kuwait, this study has three objectives. First, it investigates the extent of compliance with IFRS with respect to firms listed on the Kuwait Stock Exchange (KSE). Second, it examines the value relevance of accounting information produced by KSE-listed firms over the 1995 to 2006 period. The third objective links the first two and explores the association between the level of compliance with IFRS and the value relevance of accounting information to market participants. Since it is among the first countries to adopt IFRS, Kuwait provides an ideal setting in which to explore these objectives. In addition, the Kuwaiti accounting environment provides an interesting regulatory context in which each KSE-listed firm is required to appoint at least two external auditors from separate auditing firms. Based on the research objectives, five research questions (RQs) are addressed. RQ1 and RQ2 aim to determine the extent to which KSE-listed firms comply with IFRS and factors contributing to variations in compliance levels. These factors include firm attributes (firm age, leverage, size, profitability, liquidity), the number of brand name (Big-4) auditing firms auditing a firm’s financial statements, and industry categorization. RQ3 and RQ4 address the value relevance of IFRS-based financial statements to investors. RQ5 addresses whether the level of compliance with IFRS contributes to the value relevance of accounting information provided to investors. Based on the potential improvement in value relevance from adopting and complying with IFRS, it is predicted that the higher the level of compliance with IFRS, the greater the value relevance of book values and earnings. The research design of the study consists of two parts. First, in accordance with prior disclosure research, the level of compliance with mandatory IFRS is examined using a disclosure index. Second, the value relevance of financial statement information, specifically, earnings and book value, is examined empirically using two valuation models: price and returns models. The combined empirical evidence that results from the application of both models provides comprehensive insights into value relevance of accounting information in an emerging market setting. Consistent with expectations, the results show the average level of compliance with IFRS mandatory disclosures for all KSE-listed firms in 2006 was 72.6 percent; thus, indicating KSE-listed firms generally did not fully comply with all requirements. Significant variations in the extent of compliance are observed among firms and across accounting standards. As predicted, older, highly leveraged, larger, and profitable KSE-listed firms are more likely to comply with IFRS required disclosures. Interestingly, significant differences in the level of compliance are observed across the three possible auditor combinations of two Big-4, two non-Big 4, and mixed audit firm types. The results for the price and returns models provide evidence that earnings and book values are significant factors in the valuation of KSE-listed firms during the 1995 to 2006 period. However, the results show that the value relevance of earnings and book values decreased significantly during that period, suggesting that investors rely less on financial statements, possibly due to the increase in the available non-financial statement sources. Notwithstanding this decline, a significant association is observed between the level of compliance with IFRS and the value relevance of earnings and book value to KSE investors. The findings make several important contributions. First, they raise concerns about the effectiveness of the regulatory body that oversees compliance with IFRS in Kuwait. Second, they challenge the effectiveness of the two-auditor requirement in promoting compliance with regulations as well as the associated cost-benefit of this requirement for firms. Third, they provide the first known empirical evidence linking the level of IFRS compliance with the value relevance of financial statement information. Finally, the findings are relevant for standard setters and for their current review of KSE regulations. In particular, they highlight the importance of establishing and maintaining adequate monitoring and enforcement mechanisms to ensure compliance with accounting standards. In addition, the finding that stricter compliance with IFRS improves the value relevance of accounting information highlights the importance of full compliance with IFRS and not just mere adoption.