945 resultados para Saturated soils


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews Japanese limnological studies mainly in the McMurdo and Syowa oases, with special emphasis on the nutrient distribution. Generally, the chemical composition of the major ionic components in the coastal lakes and ponds is similar to that in seawater, while that in inland Dry Valley lakes and ponds of the McMurdo Oasis is abundant in calcium, magnesium and sulfate ions. The former can be explained by the direct influences of sea salts, while the latter is mainly attributable to the accumulation of atmospheric salts. Most saline lakes are meromictic. Dissolved oxygen concentrations in the upper layers are saturated or supersaturated, but the bottom layers are anoxic and often hydrogen sulfide occurs. The concentrations of nutrients vary largely not only among the lakes but also with depth. Silicate-Si, which is generally abundant in all freshwater and saline lakes, may be due to erosions of soils and rocks. Nitrite-N concentrations in both freshwater and saline lakes are generally low. Nitrate-N concentrations in the oxic layers of the inland saline lakes in the McMurdo Oasis arc often high, but not high in the coastal saline lakes of the Syowa and Vestfold oases. The abundance of phosphate-P and ammonium-N in the bottom stagnant layers of saline lakes can be explained by the accumulation of microbially released nutrients due to the decomposition of organic substances. Nutrients are supplied mainly from meltstreams in the catchment areas, and are proved to play an important role in primary production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lena River Delta, which is the largest delta in the Arctic, extends over an area of 32 000 km**2 and likely holds more than half of the entire soil organic carbon (SOC) mass stored in the seven major deltas in the northern permafrost regions. The geomorphic units of the Lena River Delta which were formed by true deltaic sedimentation processes are a Holocene river terrace and the active floodplains. Their mean SOC stocks for the upper 1 m of soils were estimated at 29 kg/m**2 ± 10 kg/m**2 and at 14 kg/m**2 ± 7 kg/m**2, respectively. For the depth of 1 m, the total SOC pool of the Holocene river terrace was estimated at 121 Tg ± 43 Tg, and the SOC pool of the active floodplains was estimated at 120 Tg ± 66 Tg. The mass of SOC stored within the observed seasonally thawed active layer was estimated at about 127 Tg assuming an average maximum active layer depth of 50 cm. The SOC mass which is stored in the perennially frozen ground at the increment 50-100 cm soil depth, which is currently excluded from intense biogeochemical exchange with the atmosphere, was estimated at 113 Tg. The mean nitrogen (N) stocks for the upper 1 m of soils were estimated at 1.2 kg/m**2 ± 0.4 kg/m**2 for the Holocene river terrace and at 0.9 kg/m**2 ± 0.4 kg/m**2 for the active floodplain levels, respectively. For the depth of 1 m, the total N pool of the river terrace was estimated at 4.8 Tg ± 1.5 Tg, and the total N pool of the floodplains was estimated at 7.7 Tg ± 3.6 Tg. Considering the projections for deepening of the seasonally thawed active layer up to 120 cm in the Lena River Delta region within the 21st century, these large carbon and nitrogen stocks could become increasingly available for decomposition and mineralization processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study was carried out on soils of the maritime (Arctowski, King George Island) and the continental (Casey, Wilkes Land) Antarctic. Soil sampIes are described for surface layers (0-10 cm) by their in situ temperature profiles as well as by field and laboratory analyses of grain sizes, pH and nutrient contents. Active cryoturbation is a main factor of mixing processes in surfaces with high silt and clay content. In both regions processes of podzolisation were recognized. Microclimatic conditions show the importance of small scale processes which are of special importance for freeze-thaw cycles. The distribution of nutrients and other inorganic components is rather homogeneous in regosols and leptosols. But in soils with organic top layers by lichen and moss cushions (crusts) accumulation occurs as well as displacement of metal ions into deeper layers (>10 cm). Histosols show patterns of brown soils. Special attention is given to the origin of nitrogen compounts and the different ways of import of other components (e.g. chloride) into the Antarctic system are discussed.