852 resultados para San Francisco. Strybing Arboretum.
Resumo:
Using the Rapid Oscillation in the Solar Atmosphere (ROSA) instrument at the Dunn Solar Telescope we have found that the spectra of fluctuations of the G-band (cadence 1.05 s) and Ca II K-line (cadence 4.2 s) intensities show correlated fluctuations above white noise out to frequencies beyond 300 mHz and up to 70 mHz, respectively. The noise-corrected G-band spectrum presents a scaling range (Ultra High Frequency “UHF”) for f = 25-100 mHz, with an exponent consistent with the presence of turbulent motions. The UHF power, is concentrated at the locations of magnetic bright points in the intergranular lanes, it is highly intermittent in time and characterized by a positive kurtosis κ. Combining values of G-band and K-line intensities, the UHF power, and κ, reveals two distinct “states” of the internetwork solar atmosphere. State 1, with κ ≍ 6, which includes almost all the data, is characterized by low intensities and low UHF power. State 2, with κ ≍ 3, including a very small fraction of the data, is characterized by high intensities and high UHF power. Superposed epoch analysis shows that for State 1, the K-line intensity presents 3.5 min chromospheric oscillations with maxima occurring 21 s after G-band intensity maxima implying a 150-210 km effective height difference. For State 2, the G-band and K-line intensity maxima are simultaneous, suggesting that in the highly magnetized environment sites of G-band and K-line emission may be spatially close together. Analysis of observations obtained with Hinode/SOT confirm a scaling range in the G-band spectrum up to 53 mHz also consistent with turbulent motions as well as the identification of two distinct states in terms of the H-line intensity and G-band power as functions of G-band intensity.
Resumo:
H2 is considered to be a potential alternative fuel due to its high energy density by weight and working with pollution free. Currently, ethanol conversion to hydrogen has drawn much attention because it provides a viable way for H2 production from renewable resources. In this work, we combined theoretical and experimental efforts to study the reaction mechanism of ethanol steam reforming on Rh catalysts. The results suggest that acetaldehyde (CH3CHO) is an important reaction intermediate in the reaction on nano-sized Rh catalyst. Our theoretical work suggests that the H-bond effect significantly modifies the ethanol decomposition pathway. The possible reaction pathway on Rh (211) surface is suggested as: CH3CH2OH → CH3CH2O → CH3CHO → CH3CO → CH3+CO → CH2+CO → CH+CO → C+CO, followed by the water gas shift reaction to yield H2 and CO2. It was found that that the water gas shift reaction is paramount in the ethanol steam reforming process.
Resumo:
Cryptotephras (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe to date and correlate widely distributed geologic, paleoenvironmental and archaeological records. Pyne-O'Donnell et al. (2012) established the potential for developing a similar crypto-tephrostratigraphy across eastern North America by identifying multiple tephra, including the White River Ash (east; WRAe), St. Helens We and East Lake, in a peat core located in Newfoundland. Following on from this work, several ongoing projects have examined additional peat cores from Michigan, New York State, Maine, Nova Scotia and Newfoundland to build a tephrostratigraphic framework for this region. Using the precedent set by recent research by Jensen et al.(in press) that correlated the Alaskan WRAe to the European cryptotephra AD860B, unknown tephras identified in this work were not necessarily assumed to be from "expected" source areas (e.g. the Cascades). Here we present several examples of the preservation of tephra layers with an intercontinental distribution (i.e. WRAe and Ksudach 1), from relatively small magnitude events (i.e. St. Helens layer T, Mono Crater), and the first example of a Mexican ash in the NE (Volcan Ceboruco, Jala pumice). There are several implications of the identification of these units. These far-travelled ashes: (1) highlight the need to consider "ultra" distal source volcanoes for unknown cryptotephra deposits,. (2) present an opportunity for physical volcanologists to examine why some eruptions have an exceptional distribution of ash that is not necessarily controlled by the magnitude of the event. (3) complicate the idea of using tephrostratigraphic frameworks to understand the frequency of eruptions towards aiding hazard planning and prediction (e.g. Swindles et al., 2011). (4) show that there is a real potential to link tropical and mid to high-latitude paleoenvironmental records. Jensen et al. (in press) Transatlantic correlation of the Alaskan White River Ash. Geology. Pyne-O'Donnell et al. (2012). High-precision ultra-distal Holocene tephrochronology in North America. Quaternary Science Reviews, 52, 6-11. Swindles et al. (2011). A 7000 yr perspective on volcanic ash clouds affecting northern Europe. Geology, 39, 887-890.
Resumo:
In July 2012, legislation on political party funding and candidate gender quotas was enacted by the Irish Parliament. The Electoral (Amendment) (Political Funding) Act 2012 provides for a 30% gender quota for party candidates at the next general election, rising to 40% seven years thereafter. Non-compliant parties will lose half of their annual state funding. Informed by insights from feminist institutionalism, this paper will consider the question: why did Irish political parties, who have always been so reluctant to tackle the question of women’s under-representation, suddenly do a volte-face and introduce such a radical measure as legislative gender quotas? In answering this question, we argue that the political reform discourse that emerged following the recent Irish economic crisis was a significant factor in the adoption of legislative gender quotas in the Republic of Ireland. It signified, and made visible, the divergence between politicians and the public on the issue in a context where political representatives were under question, and political institutions being criticised, for ineffective political management. We contend that Ireland is an example of how apparently enduring and immutable gender norms can be overcome. We suggest that feminist institutionalism enables an unpacking of the messy complexities of institutional resistance to change and reveals the power of informal institutions to shape outcomes leading to a major formal rule change.
Resumo:
Sedimentologic and AMS 14C age data are reported for calcareous hemipelagic mud samples taken from gravity cores collected at sites within, or adjacent to five submarine landslides identified with multibeam bathymetry data on the Nerrang Plateau segment and surrounding canyons of eastern Australia's continental slope (Bribie Bowl, Coolangatta-2, Coolangatta-1, Cudgen and Byron). Sediments are comprised of mixtures of calcareous and terrigenous clay (10-20%), silt (50-65%) and sand (15-40%) and are generally uniform in appearance. Their carbonate contents vary between and 17% and 22% by weight while organic carbon contents are less than 10% by weight. Dating of conformably deposited material identified in ten of the twelve cores indicates a range of sediment accumulation rates between 0.017mka-1 and 0.2 mka-1 which are consistent with previous estimates reported for this area. One slide-adjacent core, and four within-landslide cores present depositional hiatus surfaces located at depths of 0.8 to 2.2 meters below the present-day seafloor and identified by a sharp, colour-change boundary; discernable but small increases in sediment stiffness; and a slight increase in sediment bulk density of 0.1 gcm-3. Distinct gaps in AMS 14C age of at least 20ka are recorded across these boundary surfaces. Examination of sub-bottom profiler records of transects through three of the within-slide core-sites and their nearby landslide scarps available for the Coolangatta-1 and Cudgen slides indicate that: 1) the youngest identifiable sediment layer reflectors upslope of these slides, terminate on and are truncated by slide rupture surfaces; and 2) there is no obvious evidence in the sub-bottom profiles for a post-slide sediment layer draped over or otherwise burying slide ruptures or exposed slide detachment surfaces. This suggests that both these submarine landslides are geologically recent and suggests that the hiatus surfaces identified in Coolangatta-1's and Cudgen's within-slide cores are either: a) erosional features that developed after the occurrence of the landslide in which case the hiatus surface age provides a minimum age for landslide occurrence or b) detachment surfaces from which slabs of near-surface sediment were removed during landsliding in which case the post-hiatus sediment dates indicates approximately when landsliding occurred. In either case, it is reasonable to suggest that these two spatially adjacent slides occurred penecontemporaneously approximately 20,000 years ago.
Resumo:
Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energy measurements are hampered by the low power sampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation.
We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via sta- tistical sampling, which overcomes the limitations of power sens- ing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and paral- lel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate two use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37% and an ocean modelling code by 33%, compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.
Resumo:
Quasi-phase matching (QPM) can be used to increase the conversion efficiency of the high harmonic generation (HHG) process. We observed QPM with an improved dual-gas foil target with a 1 kHz, 10 mJ, 30 fs laser system. Phase tuning and enhancement were possible within a spectral range from 17 nm to 30 nm. Furthermore analytical calculations and numerical simulations were carried out to distinguish QPM from other effects, such as the influence of adjacent jets on each other or the laser gas interaction. The simulations were performed with a 3 dimensional code to investigate the phase matching of the short and long trajectories individually over a large spectral range.
Resumo:
The electrochemical promotion of a platinum catalyst for ethylene oxidation on a dual chamber membrane reactor was studied. The catalyst was supported on a La0.6Sr0.4Co0.2Fe0.803 membrane. Due the supporting membrane's electronic conductivity it is possible to promote the reaction by controlling the oxygen chemical potential difference across the membrane. Upon establishment of an oxygen potential difference across the membrane, oxygen species can migrate and spillover onto the catalyst surface, modifying the catalytic activity. Initial experiments showed an overall promotion of approximately one order of magnitude of the reaction rate of ethylene, under an oxygen atmosphere on the sweep side of the membrane reactor, as compared with the rate under an inert sweep gas. The reaction rate can keep its promoted state even after the flow of oxygen on the sweep side was interrupted. This behavior caused further promotion with every experiment cycle. The causes of permanent promotion and on demonstrating controllable promotion of the catalytic activity are presented. This is an abstract of a paper presented at the AIChE Annual Meeting (San Francisco, CA 11/12-17/2006).