947 resultados para SYSTEMS DYNAMICS
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Understanding complex social-ecological systems, and anticipating how they may respond to rapid change, requires an approach that incorporates environmental, social, economic, and policy factors, usually in a context of fragmented data availability. We employed fuzzy cognitive mapping (FCM) to integrate these factors in the assessment of future wildfire risk in the Chiquitania region, Bolivia. In this region, dealing with wildfires is becoming increasingly challenging because of reinforcing feedbacks between multiple drivers. We conducted semistructured interviews and constructed different FCMs in focus groups to understand the regional dynamics of wildfire from diverse perspectives. We used FCM modelling to evaluate possible adaptation scenarios in the context of future drier climatic conditions. Scenarios also considered possible failure to respond in time to the emergent risk. This approach proved of great potential to support decision making for risk management. It helped identify key forcing variables and generate insights into potential risks and trade-offs of different strategies. The “Hands-off” scenario resulted in amplified impacts driven by intensifying trends, affecting particularly the agricultural production under drought conditions. The “Fire management” scenario, which adopted a bottom-up approach to improve controlled burning, showed less trade-offs between wildfire risk reduction and production compared with the “Fire suppression” scenario. Findings highlighted the importance of considering strategies that involve all actors who use fire, and the need to nest these strategies for a more systemic approach to manage wildfire risk. The FCM model could be used as a decision-support tool and serve as a “boundary object” to facilitate collaboration and integration of different perceptions of fire in the region. This approach also has the potential to inform decisions in other dynamic frontier landscapes around the world that are facing increased risk of large wildfires.
Resumo:
The phenomenon of patterned distribution of pH near the cell membrane of the algae Chara corallina upon illumination is well-known. In this paper, we develop a mathematical model, based on the detailed kinetic analysis of proton fluxes across the cell membrane, to explain this phenomenon. The model yields two coupled nonlinear partial differential equations which describe the spatial dynamics of proton concentration changes and transmembrane potential generation. The experimental observation of pH pattern formation, its period and amplitude of oscillation, and also its hysteresis in response to changing illumination, are all reproduced by our model. A comparison of experimental results and predictions of our theory is made. Finally, a mechanism for pattern formation in Chara corallina is proposed.
Resumo:
The dynamics, shape, deformation, and orientation of red blood cells in microcirculation affect the rheology, flow resistance and transport properties of whole blood. This leads to important correlations of cellular and continuum scales. Furthermore, the dynamics of RBCs subject to different flow conditions and vessel geometries is relevant for both fundamental research and biomedical applications (e.g drug delivery). In this thesis, the behaviour of RBCs is investigated for different flow conditions via computer simulations. We use a combination of two mesoscopic particle-based simulation techniques, dissipative particle dynamics and smoothed dissipative particle dynamics. We focus on the microcapillary scale of several μm. At this scale, blood cannot be considered at the continuum but has to be studied at the cellular level. The connection between cellular motion and overall blood rheology will be investigated. Red blood cells are modelled as viscoelastic objects interacting hydrodynamically with a viscous fluid environment. The properties of the membrane, such as resistance against bending or shearing, are set to correspond to experimental values. Furthermore, thermal fluctuations are considered via random forces. Analyses corresponding to light scattering measurements are performed in order to compare to experiments and suggest for which situations this method is suitable. Static light scattering by red blood cells characterises their shape and allows comparison to objects such as spheres or cylinders, whose scattering signals have analytical solutions, in contrast to those of red blood cells. Dynamic light scattering by red blood cells is studied concerning its suitability to detect and analyse motion, deformation and membrane fluctuations. Dynamic light scattering analysis is performed for both diffusing and flowing cells. We find that scattering signals depend on various cell properties, thus allowing to distinguish different cells. The scattering of diffusing cells allows to draw conclusions on their bending rigidity via the effective diffusion coefficient. The scattering of flowing cells allows to draw conclusions on the shear rate via the scattering amplitude correlation. In flow, a RBC shows different shapes and dynamic states, depending on conditions such as confinement, physiological/pathological state and cell age. Here, two essential flow conditions are studied: simple shear flow and tube flow. Simple shear flow as a basic flow condition is part of any more complex flow. The velocity profile is linear and shear stress is homogeneous. In simple shear flow, we find a sequence of different cell shapes by increasing the shear rate. With increasing shear rate, we find rolling cells with cup shapes, trilobe shapes and quadrulobe shapes. This agrees with recent experiments. Furthermore, the impact of the initial orientation on the dynamics is studied. To study crowding and collective effects, systems with higher haematocrit are set up. Tube flow is an idealised model for the flow through cylindric microvessels. Without cell, a parabolic flow profile prevails. A single red blood cell is placed into the tube and subject to a Poiseuille profile. In tube flow, we find different cell shapes and dynamics depending on confinement, shear rate and cell properties. For strong confinements and high shear rates, we find parachute-like shapes. Although not perfectly symmetric, they are adjusted to the flow profile and maintain a stationary shape and orientation. For weak confinements and low shear rates, we find tumbling slippers that rotate and moderately change their shape. For weak confinements and high shear rates, we find tank-treading slippers that oscillate in a limited range of inclination angles and strongly change their shape. For the lowest shear rates, we find cells performing a snaking motion. Due to cell properties and resultant deformations, all shapes differ from hitherto descriptions, such as steady tank-treading or symmetric parachutes. We introduce phase diagrams to identify flow regimes for the different shapes and dynamics. Changing cell properties, the regime borders in the phase diagrams change. In both flow types, both the viscosity contrast and the choice of stress-free shape are important. For in vitro experiments, the solvent viscosity has often been higher than the cytosol viscosity, leading to a different pattern of dynamics, such as steady tank-treading. The stress-free state of a RBC, which is the state at zero shear stress, is still controversial, and computer simulations enable direct comparisons of possible candidates in equivalent flow conditions.
Resumo:
Abstract not available
Resumo:
This paper introduces systems of exchange values as tools for the organization of multi-agent systems. Systems of exchange values are defined on the basis of the theory of social exchanges, developed by Piaget and Homans. A model of social organization is proposed, where social relations are construed as social exchanges and exchange values are put into use in the support of the continuity of the performance of social exchanges. The dynamics of social organizations is formulated in terms of the regulation of exchanges of values, so that social equilibrium is connected to the continuity of the interactions. The concept of supervisor of social equilibrium is introduced as a centralized mechanism for solving the problem of the equilibrium of the organization The equilibrium supervisor solves such problem making use of a qualitative Markov Decision Process that uses numerical intervals for the representation of exchange values.
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.
Resumo:
Una detallada descripción de la dinámica de bajas energías del entrelazamiento multipartito es proporcionada para sistemas armónicos en una gran variedad de escenarios disipativos. Sin hacer ninguna aproximación central, esta descripción yace principalmente sobre un conjunto razonable de hipótesis acerca del entorno e interacción entorno-sistema, ambas consistente con un análisis lineal de la dinámica disipativa. En la primera parte se deriva un criterio de inseparabilidad capaz de detectar el entrelazamiento k-partito de una extensa clase de estados gausianos y no-gausianos en sistemas de variable continua. Este criterio se emplea para monitorizar la dinámica transitiva del entrelazamiento, mostrando que los estados no-gausianos pueden ser tan robustos frente a los efectos disipativos como los gausianos. Especial atención se dedicada a la dinámica estacionaria del entrelazamiento entre tres osciladores interaccionando con el mismo entorno o diferentes entornos a distintas temperaturas. Este estudio contribuye a dilucidar el papel de las correlaciones cuánticas en el comportamiento de la corrientes energéticas.
Resumo:
The study of quantum degenerate gases has many applications in topics such as condensed matter dynamics, precision measurements and quantum phase transitions. We built an apparatus to create 87Rb Bose-Einstein condensates (BECs) and generated, via optical and magnetic interactions, novel quantum systems in which we studied the contained phase transitions. For our first experiment we quenched multi-spin component BECs from a miscible to dynamically unstable immiscible state. The transition rapidly drives any spin fluctuations with a coherent growth process driving the formation of numerous spin polarized domains. At much longer times these domains coarsen as the system approaches equilibrium. For our second experiment we explored the magnetic phases present in a spin-1 spin-orbit coupled BEC and the contained quantum phase transitions. We observed ferromagnetic and unpolarized phases which are stabilized by the spin-orbit coupling’s explicit locking between spin and motion. These two phases are separated by a critical curve containing both first-order and second-order transitions joined at a critical point. The narrow first-order transition gives rise to long-lived metastable states. For our third experiment we prepared independent BECs in a double-well potential, with an artificial magnetic field between the BECs. We transitioned to a single BEC by lowering the barrier while expanding the region of artificial field to cover the resulting single BEC. We compared the vortex distribution nucleated via conventional dynamics to those produced by our procedure, showing our dynamical process populates vortices much more rapidly and in larger number than conventional nucleation.
Resumo:
Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.
Resumo:
We review mathematical aspects of biophysical dynamics, signal transduction and network architecture that have been used to uncover functionally significant relations between the dynamics of single neurons and the networks they compose. We focus on examples that combine insights from these three areas to expand our understanding of systems neuroscience. These range from single neuron coding to models of decision making and electrosensory discrimination by networks and populations, as well as coincidence detection in pairs of dendrites and the dynamics of large networks of excitable dendritic spines. We conclude by describing some of the challenges that lie ahead as the applied mathematics community seeks to provide the tools that will ultimately underpin systems neuroscience.
Resumo:
A detailed non-equilibrium state diagram of shape-anisotropic particle fluids is constructed. The effects of particle shape are explored using Naive Mode Coupling Theory (NMCT), and a single particle Non-linear Langevin Equation (NLE) theory. The dynamical behavior of non-ergodic fluids are discussed. We employ a rotationally frozen approach to NMCT in order to determine a transition to center of mass (translational) localization. Both ideal and kinetic glass transitions are found to be highly shape dependent, and uniformly increase with particle dimensionality. The glass transition volume fraction of quasi 1- and 2- dimensional particles fall monotonically with the number of sites (aspect ratio), while 3-dimensional particles display a non-monotonic dependence of glassy vitrification on the number of sites. Introducing interparticle attractions results in a far more complex state diagram. The ideal non-ergodic boundary shows a glass-fluid-gel re-entrance previously predicted for spherical particle fluids. The non-ergodic region of the state diagram presents qualitatively different dynamics in different regimes. They are qualified by the different behaviors of the NLE dynamic free energy. The caging dominated, repulsive glass regime is characterized by long localization lengths and barrier locations, dictated by repulsive hard core interactions, while the bonding dominated gel region has short localization lengths (commensurate with the attraction range), and barrier locations. There exists a small region of the state diagram which is qualified by both glassy and gel localization lengths in the dynamic free energy. A much larger (high volume fraction, and high attraction strength) region of phase space is characterized by short gel-like localization lengths, and long barrier locations. The region is called the attractive glass and represents a 2-step relaxation process whereby a particle first breaks attractive physical bonds, and then escapes its topological cage. The dynamic fragility of fluids are highly particle shape dependent. It increases with particle dimensionality and falls with aspect ratio for quasi 1- and 2- dimentional particles. An ultralocal limit analysis of the NLE theory predicts universalities in the behavior of relaxation times, and elastic moduli. The equlibrium phase diagram of chemically anisotropic Janus spheres and Janus rods are calculated employing a mean field Random Phase Approximation. The calculations for Janus rods are corroborated by the full liquid state Reference Interaction Site Model theory. The Janus particles consist of attractive and repulsive regions. Both rods and spheres display rich phase behavior. The phase diagrams of these systems display fluid, macrophase separated, attraction driven microphase separated, repulsion driven microphase separated and crystalline regimes. Macrophase separation is predicted in highly attractive low volume fraction systems. Attraction driven microphase separation is charaterized by long length scale divergences, where the ordering length scale determines the microphase ordered structures. The ordering length scale of repulsion driven microphase separation is determined by the repulsive range. At the high volume fractions, particles forgo the enthalpic considerations of attractions and repulsions to satisfy hard core constraints and maximize vibrational entropy. This results in site length scale ordering in rods, and the sphere length scale ordering in Janus spheres, i.e., crystallization. A change in the Janus balance of both rods and spheres results in quantitative changes in spinodal temperatures and the position of phase boundaries. However, a change in the block sequence of Janus rods causes qualitative changes in the type of microphase ordered state, and induces prominent features (such as the Lifshitz point) in the phase diagrams of these systems. A detailed study of the number of nearest neighbors in Janus rod systems reflect a deep connection between this local measure of structure, and the structure factor which represents the most global measure of order.
Resumo:
Many of the equations describing the dynamics of neural systems are written in terms of firing rate functions, which themselves are often taken to be threshold functions of synaptic activity. Dating back to work by Hill in 1936 it has been recognized that more realistic models of neural tissue can be obtained with the introduction of state-dependent dynamic thresholds. In this paper we treat a specific phenomenological model of threshold accommodation that mimics many of the properties originally described by Hill. Importantly we explore the consequences of this dynamic threshold at the tissue level, by modifying a standard neural field model of Wilson-Cowan type. As in the case without threshold accommodation classical Mexican-Hat connectivity is shown to allow for the existence of spatially localized states (bumps) in both one and two dimensions. Importantly an analysis of bump stability in one dimension, using recent Evans function techniques, shows that bumps may undergo instabilities leading to the emergence of both breathers and traveling waves. Moreover, a similar analysis for traveling pulses leads to the conditions necessary to observe a stable traveling breather. In the regime where a bump solution does not exist direct numerical simulations show the possibility of self-replicating bumps via a form of bump splitting. Simulations in two space dimensions show analogous localized and traveling solutions to those seen in one dimension. Indeed dynamical behavior in this neural model appears reminiscent of that seen in other dissipative systems that support localized structures, and in particular those of coupled cubic complex Ginzburg-Landau equations. Further numerical explorations illustrate that the traveling pulses in this model exhibit particle like properties, similar to those of dispersive solitons observed in some three component reaction-diffusion systems. A preliminary account of this work first appeared in S Coombes and M R Owen, Bumps, breathers, and waves in a neural network with spike frequency adaptation, Physical Review Letters 94 (2005), 148102(1-4).
Resumo:
The investigation of pathogen persistence in vector-borne diseases is important in different ecological and epidemiological contexts. In this thesis, I have developed deterministic and stochastic models to help investigating the pathogen persistence in host-vector systems by using efficient modelling paradigms. A general introduction with aims and objectives of the studies conducted in the thesis are provided in Chapter 1. The mathematical treatment of models used in the thesis is provided in Chapter 2 where the models are found locally asymptotically stable. The models used in the rest of the thesis are based on either the same or similar mathematical structure studied in this chapter. After that, there are three different experiments that are conducted in this thesis to study the pathogen persistence. In Chapter 3, I characterize pathogen persistence in terms of the Critical Community Size (CCS) and find its relationship with the model parameters. In this study, the stochastic versions of two epidemiologically different host-vector models are used for estimating CCS. I note that the model parameters and their algebraic combination, in addition to the seroprevalence level of the host population, can be used to quantify CCS. The study undertaken in Chapter 4 is used to estimate pathogen persistence using both deterministic and stochastic versions of a model with seasonal birth rate of the vectors. Through stochastic simulations we investigate the pattern of epidemics after the introduction of an infectious individual at different times of the year. The results show that the disease dynamics are altered by the seasonal variation. The higher levels of pre-existing seroprevalence reduces the probability of invasion of dengue. In Chapter 5, I considered two alternate ways to represent the dynamics of a host-vector model. Both of the approximate models are investigated for the parameter regions where the approximation fails to hold. Moreover, three metrics are used to compare them with the Full model. In addition to the computational benefits, these approximations are used to investigate to what degree the inclusion of the vector population in the dynamics of the system is important. Finally, in Chapter 6, I present the summary of studies undertaken and possible extensions for the future work.