889 resultados para SUPEROXIDE DISMUTASE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress is a key component in the immunosuppression of chronic kidney disease (CKD), and neutrophil function may be impaired by oxidative stress. To test the hypothesis that in uremic dogs with CKD, oxidative stress is increased and neutrophils become less viable and functional, 18 adult dogs with CKD were compared with 15 healthy adult dogs. Blood count and urinalysis were done, and the serum biochemical profile and plasma lipid peroxidation (measurement of thiobarbituric acid reactive substances) were determined with the use of commercial reagents. Plasma total antioxidant capacity (TAC) was measured with a spectrophotometer and commercial reagents, superoxide production with a hydroethidine probe, and the viability and apoptosis of neutrophils with capillary flow cytometry and the annexin V-PE system. The plasma concentrations of cholesterol (P = 0.0415), creatinine (P < 0.0001), and urea (P < 0.0001) were significantly greater in the uremic dogs than in the control dogs. The hematocrit (P = 0.0004), urine specific gravity (P = 0.015), and plasma lipid peroxidation (P < 0.0001) were significantly lower in the dogs that were in late stages of CKD than in the control group. Compared with those isolated from the control group, neutrophils isolated from the CKD group showed a higher rate of spontaneous (0.10 ± 0.05 versus 0.49 ± 0.09; P = 0.0033; median ± standard error of mean) and camptothecin-induced (18.53 ± 4.06 versus 44.67 ± 4.85; P = 0.0066) apoptosis and lower levels of superoxide production in the presence (1278.8 ± 372.8 versus 75.65 ± 86.6; P = 0.0022) and absence (135.29 ± 51.74 versus 41.29 ± 8.38; P = 0.0138) of phorbol-12-myristate-13-acetate stimulation. Thus, oxidative stress and acceleration of apoptosis occurs in dogs with CKD, the apoptosis diminishing the number of viable neutrophils and neutrophil superoxide production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No período da menopausa, a incidência de doenças cardiovasculares em mulheres é equivalente a dos homens, e assim os gastos públicos com saúde nesta população em particular, aumentam significativamente, uma vez que as mulheres possuem maior longevidade se comparadas aos homens. Os mecanismos celulares e/ou moleculares pelos quais ocorre maior incidência de hipertensão arterial em mulheres após a menopausa ainda não são claros. Uma variedade de fatores parece contribuir para a elevação de pressão arterial na menopausa, entre eles destacam-se a deficiência de estrogênio, o aumento do estresse oxidativo, a disfunção endotelial, a elevação da atividade do sistema renina-angiotensina, a elevação nos níveis plasmáticos de testosterona, as alterações no perfil lipídico e o aumento no ganho de peso. Trabalhos prévios mostram que os efeitos benéficos do exercício físico sobre o sistema cardiovascular estão relacionados a maior produção de óxido nítrico e/ou sua biodisponibilidade para o músculo liso vascular. Este último mecanismo tem sido relacionado com elevação da atividade da enzima antioxidante superóxido dismutase (SOD), que representa um importante mecanismo de defesa celular contra a formação de radicais livres. Objetivo: avaliar os níveis plasmáticos da enzima superóxido dismutase em resposta a um programa de treinamento físico aeróbio por 8 semanas realizado em mulheres no climatério. Métodos: A amostra foi constituída por 31 mulheres normotensas (49,3±1,2 anos) e 15 hipertensas (52,2±1,6 anos) todas diagnosticadas no período do climatério e sedentárias... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a moderate electrical stimulation on superoxide and nitric oxide production by primary cultured skeletal muscle cells were evaluated. The involvement of the main sites of these reactive species production and the relationship between superoxide and nitric oxide production were also examined. Production of superoxide was evaluated by cytochrome c reduction and dihydroethidium oxidation assays. Electrical stimulation increased superoxide production after 1?h incubation. A xanthine oxidase inhibitor caused a partial decrease of superoxide generation and a significant amount of mitochondria-derived superoxide was also observed. Nitric oxide production was assessed by nitrite measurement and by using 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Using both methods an increased production of nitric oxide was obtained after electrical stimulation, which was also able to induce an increase of iNOS content and NF-?B activation. The participation of superoxide in nitric oxide production was investigated by incubating cells with DAF-2-DA in the presence or absence of electrical stimulation, a superoxide generator system (xanthinexanthine oxidase), a mixture of NOS inhibitors and SOD-PEG. Our data show that the induction of muscle contraction by a moderate electrical stimulation protocol led to an increased nitric oxide production that can be controlled by superoxide generation. The cross talk between these reactive species likely plays a role in exercise-induced maintenance and adaptation by regulating muscular glucose metabolism, force of contraction, fatigue, and antioxidant systems activities. J. Cell. Physiol. 227: 25112518, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial dysfunction precedes hypertension and atherosclerosis and predicts cardiac allograft vasculopathy and death in heart transplant recipients. Endothelial overproduction of reactive oxygen species, such as superoxide anions produced by NAD(P)H oxidase, induces endothelial dysfunction. Because immunosuppressive drugs have been associated with increased reactive oxygen species production and endothelial dysfunction, we sought to elucidate the underlying mechanisms. Reactive oxygen species, release of superoxide anions, and NAD(P)H oxidase activity were studied in human umbilical vein endothelial cells and in polymorphonuclear neutrophils. Gp91ds-tat was used to specifically block NAD(P)H oxidase. Transcriptional activation of different subunits of NAD(P)H oxidase was assessed by real-time RT-PCR. Rac1 subunit translocation and activation were studied by membrane fractionation and pull-down assays. Calcineurin inhibitors significantly increased endothelial superoxide anions production because of NAD(P)H oxidase, whereas mycophenolate acid (MPA) blocked it. MPA also attenuated the respiratory burst induced by neutrophil NAD(P)H oxidase. Because transcriptional activation of NAD(P)H oxidase was not affected, but addition of guanosine restored endothelial superoxide anions formation after MPA treatment, we speculate that the inhibitory effect of MPA was mediated by depletion of cellular guanosine triphosphate content. This prevented activation of Rac1 and, thus, of endothelial NAD(P)H oxidase. Because all heart transplant recipients are at risk for cardiac allograft vasculopathy development, these differential effects of immunosuppressants on endothelial oxidative stress should be considered in the choice of immunosuppressive drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Type D personality (Type D) is an independent psychosocial risk factor for poor cardiac prognosis and increased mortality in patients with cardiovascular disease (CVD), but the involved mechanisms are poorly understood. Macrophages play a pivotal role in atherosclerosis, the process underlying coronary artery disease (CAD). We investigated macrophage superoxide anion production in production in CAD patients with and without Type D. METHODS AND RESULTS We studied 20 male CAD patients with Type D (M:66.7±9.9years) and 20 age-matched male CAD patients without Type D (M:67.7±8.5years). Type D was measured using the DS14 questionnaire with the two subscales 'negative affectivity' and 'social inhibition'. We assessed macrophage superoxide anion production using the WST-1 assay. All analyses were controlled for potential confounders. CAD patients with Type D showed higher superoxide anion production compared to CAD patients without Type D (F(1,38)=15.57, p<0.001). Complementary analyses using the Type D subscales 'negative affectivity' and 'social inhibition', and their interaction as continuous measures, showed that both Type D subscales (negative affectivity: (ß=0.48, p=0.002, R(2)=0.227); social inhibition: (ß=0.46, p=0.003, R(2)=0.208)) and their interaction (ß=0.36, p=0.022, R(2)=0.130) were associated with higher WST-1 reduction scores. Results remained significant when controlling for classical CVD risk factors (i.e. body mass index, mean arterial blood pressure), atherosclerosis severity (i.e. intima media thickness, presence of carotid plaques), and psychological factors (depressive symptom severity, chronic stress). CONCLUSIONS Our results indicate higher macrophage superoxide anion production in CAD patients with Type D compared to those without Type D. This may suggest a mechanism contributing to increased morbidity and mortality in CAD patients with Type D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asbestos and silica are important industrial hazards. Exposure to these dusts can result in pulmonary fibrosis and, in the case of asbestos, cancer. Although the hazards of asbestos and silica exposure have long been known, the pathogenesis of dust-related disease is not well understood. Both silica and asbestos are thought to alter the function of the alveolar macrophage, but the nature of the biochemical alteration is unknown. Therefore, this study examined the effect of asbestos and silica on the activation pathway of the guinea pig alveolar macrophage. Activation of macrophages by physiological agents results in stimulation of phospholipase C causing phosphatidyl inositol turnover and intracellular calcium mobilization. Phosphatidyl inositol turnover produces diacylglycerol which activates protein kinase C causing superoxide anion production.^ Chrysotile stimulated alveolar macrophages to produce superoxide anion. This stimulation proceeded via phospholipase C, since chrysotile stimulated phosphatidyl inositol turnover and intracellular calcium mobilization. The possible involvement of a coupling protein was evaluated by pretreating cells with pertussis toxin. Pertussis toxin pretreatment partially inhibited chrysotile stimulation, suggesting that chrysotile activates a coupling protein in an non-classical manner. Potential binding sites for chrysotile stimulation were examined using a series of nine lectins. Chrysotile-stimulated superoxide anion production was blocked by pretreatment with lectins which bound to N-acetylglucosamine, but not by lectins which bound to mannose, fucose, or N-acetylgalactosamine. In addition, incubation with the N-acetylglucosamine polymer, chitin, inhibited chrysotile-stimulated superoxide anion production, suggesting that chrysotile stimulated superoxide anion production by binding to N-acetylglucosamine residues.^ On the other hand, silica did not stimulate superoxide anion production. The effect of silica on agonist stimulation of this pathway was examined using two stimulants of superoxide anion production, N-formyl-nle-leu-phe (FNLP, which stimulates through phospholipase C) and phorbol-12,13-dibutyrate (which directly activates protein kinase C). Sublethal doses of silica inhibited FNLP-stimulated superoxide anion production, but did not affect phorbol-12,13-dibutyrate-stimulated superoxide anion production, suggesting that the site of inhibition precedes protein kinase C. This inhibition was not due to cell membrane damage, since cell permeability to calcium-45 and rubidium-86 was not increased. It is concluded that chrysotile binds to N-acetylglucosamine residues on macrophage surface glycoproteins to stimulate the physiological pathway resulting in superoxide anion production. In contrast, silica does not stimulate superoxide anion production, but it did inhibit FNLP-stimulated superoxide anion production. ^