985 resultados para STOCHASTIC AUTOMATA NETWORKS
Resumo:
We present a novel scheme for the appearance of stochastic resonance when the dynamics of a Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an entropic contribution to the potential, may upon application of a periodic driving force result in an increase of the spectral amplification at an optimum value of the ambient noise level. The entropic stochastic resonance, characteristic of small-scale systems, may constitute a useful mechanism for the manipulation and control of single molecules and nanodevices.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
We study the time scales associated with diffusion processes that take place on multiplex networks, i.e., on a set of networks linked through interconnected layers. To this end, we propose the construction of a supra-Laplacian matrix, which consists of a dimensional lifting of the Laplacian matrix of each layer of the multiplex network. We use perturbative analysis to reveal analytically the structure of eigenvectors and eigenvalues of the complete network in terms of the spectral properties of the individual layers. The spectrum of the supra-Laplacian allows us to understand the physics of diffusionlike processes on top of multiplex networks.
Resumo:
We uncover the global organization of clustering in real complex networks. To this end, we ask whether triangles in real networks organize as in maximally random graphs with given degree and clustering distributions, or as in maximally ordered graph models where triangles are forced into modules. The answer comes by way of exploring m-core landscapes, where the m-core is defined, akin to the k-core, as the maximal subgraph with edges participating in at least m triangles. This property defines a set of nested subgraphs that, contrarily to k-cores, is able to distinguish between hierarchical and modular architectures. We find that the clustering organization in real networks is neither completely random nor ordered although, surprisingly, it is more random than modular. This supports the idea that the structure of real networks may in fact be the outcome of self-organized processes based on local optimization rules, in contrast to global optimization principles.
Resumo:
Résumé Ce travail de thèse étudie des moyens de formalisation permettant d'assister l'expert forensique dans la gestion des facteurs influençant l'évaluation des indices scientifiques, tout en respectant des procédures d'inférence établies et acceptables. Selon une vue préconisée par une partie majoritaire de la littérature forensique et juridique - adoptée ici sans réserve comme point de départ - la conceptualisation d'une procédure évaluative est dite 'cohérente' lors qu'elle repose sur une implémentation systématique de la théorie des probabilités. Souvent, par contre, la mise en oeuvre du raisonnement probabiliste ne découle pas de manière automatique et peut se heurter à des problèmes de complexité, dus, par exemple, à des connaissances limitées du domaine en question ou encore au nombre important de facteurs pouvant entrer en ligne de compte. En vue de gérer ce genre de complications, le présent travail propose d'investiguer une formalisation de la théorie des probabilités au moyen d'un environment graphique, connu sous le nom de Réseaux bayesiens (Bayesian networks). L'hypothèse principale que cette recherche envisage d'examiner considère que les Réseaux bayesiens, en concert avec certains concepts accessoires (tels que des analyses qualitatives et de sensitivité), constituent une ressource clé dont dispose l'expert forensique pour approcher des problèmes d'inférence de manière cohérente, tant sur un plan conceptuel que pratique. De cette hypothèse de travail, des problèmes individuels ont été extraits, articulés et abordés dans une série de recherches distinctes, mais interconnectées, et dont les résultats - publiés dans des revues à comité de lecture - sont présentés sous forme d'annexes. D'un point de vue général, ce travail apporte trois catégories de résultats. Un premier groupe de résultats met en évidence, sur la base de nombreux exemples touchant à des domaines forensiques divers, l'adéquation en termes de compatibilité et complémentarité entre des modèles de Réseaux bayesiens et des procédures d'évaluation probabilistes existantes. Sur la base de ces indications, les deux autres catégories de résultats montrent, respectivement, que les Réseaux bayesiens permettent également d'aborder des domaines auparavant largement inexplorés d'un point de vue probabiliste et que la disponibilité de données numériques dites 'dures' n'est pas une condition indispensable pour permettre l'implémentation des approches proposées dans ce travail. Le présent ouvrage discute ces résultats par rapport à la littérature actuelle et conclut en proposant les Réseaux bayesiens comme moyen d'explorer des nouvelles voies de recherche, telles que l'étude de diverses formes de combinaison d'indices ainsi que l'analyse de la prise de décision. Pour ce dernier aspect, l'évaluation des probabilités constitue, dans la façon dont elle est préconisée dans ce travail, une étape préliminaire fondamentale de même qu'un moyen opérationnel.
Resumo:
Well developed experimental procedures currently exist for retrieving and analyzing particle evidence from hands of individuals suspected of being associated with the discharge of a firearm. Although analytical approaches (e.g. automated Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDS) microanalysis) allow the determination of the presence of elements typically found in gunshot residue (GSR) particles, such analyses provide no information about a given particle's actual source. Possible origins for which scientists may need to account for are a primary exposure to the discharge of a firearm or a secondary transfer due to a contaminated environment. In order to approach such sources of uncertainty in the context of evidential assessment, this paper studies the construction and practical implementation of graphical probability models (i.e. Bayesian networks). These can assist forensic scientists in making the issue tractable within a probabilistic perspective. The proposed models focus on likelihood ratio calculations at various levels of detail as well as case pre-assessment.
Resumo:
Low-copy-number molecules are involved in many functions in cells. The intrinsic fluctuations of these numbers can enable stochastic switching between multiple steady states, inducing phenotypic variability. Herein we present a theoretical and computational study based on Master Equations and Fokker-Planck and Langevin descriptions of stochastic switching for a genetic circuit of autoactivation. We show that in this circuit the intrinsic fluctuations arising from low-copy numbers, which are inherently state-dependent, drive asymmetric switching. These theoretical results are consistent with experimental data that have been reported for the bistable system of the gallactose signaling network in yeast. Our study unravels that intrinsic fluctuations, while not required to describe bistability, are fundamental to understand stochastic switching and the dynamical relative stability of multiple states.
Resumo:
This work focuses on the prediction of the two main nitrogenous variables that describe the water quality at the effluent of a Wastewater Treatment Plant. We have developed two kind of Neural Networks architectures based on considering only one output or, in the other hand, the usual five effluent variables that define the water quality: suspended solids, biochemical organic matter, chemical organic matter, total nitrogen and total Kjedhal nitrogen. Two learning techniques based on a classical adaptative gradient and a Kalman filter have been implemented. In order to try to improve generalization and performance we have selected variables by means genetic algorithms and fuzzy systems. The training, testing and validation sets show that the final networks are able to learn enough well the simulated available data specially for the total nitrogen
Resumo:
Forensic scientists face increasingly complex inference problems for evaluating likelihood ratios (LRs) for an appropriate pair of propositions. Up to now, scientists and statisticians have derived LR formulae using an algebraic approach. However, this approach reaches its limits when addressing cases with an increasing number of variables and dependence relationships between these variables. In this study, we suggest using a graphical approach, based on the construction of Bayesian networks (BNs). We first construct a BN that captures the problem, and then deduce the expression for calculating the LR from this model to compare it with existing LR formulae. We illustrate this idea by applying it to the evaluation of an activity level LR in the context of the two-trace transfer problem. Our approach allows us to relax assumptions made in previous LR developments, produce a new LR formula for the two-trace transfer problem and generalize this scenario to n traces.
Resumo:
We analyze the process of informational exchange through complex networks by measuring network efficiencies. Aiming to study nonclustered systems, we propose a modification of this measure on the local level. We apply this method to an extension of the class of small worlds that includes declustered networks and show that they are locally quite efficient, although their clustering coefficient is practically zero. Unweighted systems with small-world and scale-free topologies are shown to be both globally and locally efficient. Our method is also applied to characterize weighted networks. In particular we examine the properties of underground transportation systems of Madrid and Barcelona and reinterpret the results obtained for the Boston subway network.
Resumo:
We propose a class of models of social network formation based on a mathematical abstraction of the concept of social distance. Social distance attachment is represented by the tendency of peers to establish acquaintances via a decreasing function of the relative distance in a representative social space. We derive analytical results (corroborated by extensive numerical simulations), showing that the model reproduces the main statistical characteristics of real social networks: large clustering coefficient, positive degree correlations, and the emergence of a hierarchy of communities. The model is confronted with the social network formed by people that shares confidential information using the Pretty Good Privacy (PGP) encryption algorithm, the so-called web of trust of PGP.