1000 resultados para STI Technique
Resumo:
The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.
Resumo:
An extension of the pole-zero matching method proposed by Stefano Maci et al. for the analysis of electromagnetic bandgap (EBG) structures composed by lossless dipole-based frequency selective surfaces (FSS) printed on stratified dielectric media, is presented in this paper. With this novel expansion, the dipoles length appears as a variable in the analytical dispersion equation. Thus, modal dispersion curves as a function of the dipoles length can be easily obtained with the only restriction of single Floquet mode propagation. These geometry-dispersion curves are essential for the efficient analysis and design of practical EBG structures, such as waveguides loaded with artificial magnetic conductors (AMC) for miniaturization, or leaky-wave antennas (LWA) using partially reflective surfaces (PRS). These two practical examples are examined in this paper. Results are compared with full-wave 2D and 3D simulations showing excellent agreement, thus validating the proposed technique and illustrating its utility for practical designs.
Resumo:
This article examines the relationship between scale of production, optimal choice of technique and costs for three engineering industries: nuts and bolts, iron founding and machine tools. In all three industries costs of production fell as the scale of output increased. This was associated with switches of technique and the spread of fixed costs over a larger number of units. The capital-output ratio fell and labour productivity increased with increases in scale while, in most cases, the capital-labour ratio increased. The implications of these findings are briefly discussed.
Resumo:
PURPOSE:
Design and evaluation of a novel laser-based method for micromoulding of microneedle arrays from polymeric materials under ambient conditions. The aim of this study was to optimise polymeric composition and assess the performance of microneedle devices that possess different geometries.
METHODS:
A range of microneedle geometries was engineered into silicone micromoulds, and their physicochemical features were subsequently characterised.
RESULTS:
Microneedles micromoulded from 20% w/w aqueous blends of the mucoadhesive copolymer Gantrez® AN-139 were surprisingly found to possess superior physical strength than those produced from commonly used pharma polymers. Gantrez® AN-139 microneedles, 600 µm and 900 µm in height, penetrated neonatal porcine skin with low application forces (>0.03 N per microneedle). When theophylline was loaded into 600 µm microneedles, 83% of the incorporated drug was delivered across neonatal porcine skin over 24 h. Optical coherence tomography (OCT) showed that drug-free 600 µm Gantrez® AN-139 microneedles punctured the stratum corneum barrier of human skin in vivo and extended approximately 460 µm into the skin. However, the entirety of the microneedle lengths was not inserted.
CONCLUSION:
In this study, we have shown that a novel laser engineering method can be used in micromoulding of polymeric microneedle arrays. We are currently carrying out an extensive OCT-informed study investigating the influence of microneedle array geometry on skin penetration depth, with a view to enhanced transdermal drug delivery from optimised laser-engineered Gantrez® AN-139 microneedles.