997 resultados para SHORT IMPLANTS
Resumo:
Stoddart, S. and C. Malone,. Private circulation to sponsors. 2001
Resumo:
In situ forming (ISF) drug delivery implants have gained tremendous levels of interest over the last few decades. This is due to their wide range of biomedical applications such as in tissue engineering, cell encapsulation, microfluidics, bioengineering and drug delivery. Drug delivery implants forming upon injection has shown a range of advantages which include localized drug delivery, easy and less invasive application, sustained drug action, ability to tailor drug delivery, reduction in side effects associated with systemic delivery and also improved patient compliance and comfort. Different factors such as temperature, pH, ions, and exchange of solvents are involved in in situ implant formation. This review especially focuses on ISF implants that are formed through solvent induced phase inversion (SPI) technique. The article critically reviews and compares a wide range of polymers, solvents, and co-solvents that have been used in SPI implant preparation for control release of a range of drug molecules. Major drawback of SPI systems has been their high burst release. In this regard, the article exhaustively discusses factors that affect the burst release and different modification strategies that has been utilised to reduce the burst effect from these implants. Performance and controversial issues associated with the use of different biocompatible solvents in SPI systems is also discussed. Biodegradation, formulation stability, methods of characterisation and sterilisation techniques of SPI systems is comprehensively reviewed. Furthermore, the review also examines current SPI-based marketed products, their therapeutic application and associated clinical data. It also exemplifies the interest of multi-billion dollar pharma companies worldwide for further developments of SPI systems to a range of therapeutic applications. The authors believe that this will be the first review article that extensively investigate and discusses studies done to date on SPI systems. In so doing, this article will undoubtedly serve as an enlightening tool for the scientists working in the concerned area.
Resumo:
Sounds such as the voice or musical instruments can be recognized on the basis of timbre alone. Here, sound recognition was investigated with severely reduced timbre cues. Short snippets of naturally recorded sounds were extracted from a large corpus. Listeners were asked to report a target category (e.g., sung voices) among other sounds (e.g., musical instruments). All sound categories covered the same pitch range, so the task had to be solved on timbre cues alone. The minimum duration for which performance was above chance was found to be short, on the order of a few milliseconds, with the best performance for voice targets. Performance was independent of pitch and was maintained when stimuli contained less than a full waveform cycle. Recognition was not generally better when the sound snippets were time-aligned with the sound onset compared to when they were extracted with a random starting time. Finally, performance did not depend on feedback or training, suggesting that the cues used by listeners in the artificial gating task were similar to those relevant for longer, more familiar sounds. The results show that timbre cues for sound recognition are available at a variety of time scales, including very short ones.
Resumo:
Isochoric heating of solid-density matter up to a few tens of eV is of interest for investigating astrophysical or inertial fusion scenarios. Such ultra-fast heating can be achieved via the energy deposition of short-pulse laser generated electrons. Here, we report on experimental measurements of this process by means of time-and space-resolved optical interferometry. Our results are found in reasonable agreement with a simple numerical model of fast electron-induced heating. (C) 2013 AIP Publishing LLC.
Resumo:
A set of cylindrical porous titanium test samples were produced using the three-dimensional printing and sintering method with samples sintered at 900 °C, 1000 °C, 1100 °C, 1200 °C or 1300 °C. Following compression testing, it was apparent that the stress-strain curves were similar in shape to the curves that represent cellular solids. This is despite a relative density twice as high as what is considered the threshold for defining a cellular solid. As final sintering temperature increased, the compressive behaviour developed from being elastic-brittle to elastic-plastic and while Young's modulus remained fairly constant in the region of 1.5 GPa, there was a corresponding increase in 0.2% proof stress of approximately 40-80 MPa. The cellular solid model consists of two equations that predict Young's modulus and yield or proof stress. By fitting to experimental data and consideration of porous morphology, appropriate changes to the geometry constants allow modification of the current models to predict with better accuracy the behaviour of porous materials with higher relative densities (lower porosity).
Resumo:
Distinct neural populations carry signals from short-wave (S) cones. We used individual differences to test whether two types of pathways, those that receive excitatory input (S+) and those that receive inhibitory input (S-), contribute independently to psychophysical performance. We also conducted a genome-wide association study (GWAS) to look for genetic correlates of the individual differences. Our psychophysical test was based on the Cambridge Color Test, but detection thresholds were measured separately for S-cone spatial increments and decrements. Our participants were 1060 healthy adults aged 16-40. Test-retest reliabilities for thresholds were good (ρ=0.64 for S-cone increments, 0.67 for decrements and 0.73 for the average of the two). "Regression scores," isolating variability unique to incremental or decremental sensitivity, were also reliable (ρ=0.53 for increments and ρ=0.51 for decrements). The correlation between incremental and decremental thresholds was ρ=0.65. No genetic markers reached genome-wide significance (p-7). We identified 18 "suggestive" loci (p-5). The significant test-retest reliabilities show stable individual differences in S-cone sensitivity in a normal adult population. Though a portion of the variance in sensitivity is shared between incremental and decremental sensitivity, over 26% of the variance is stable across individuals, but unique to increments or decrements, suggesting distinct neural substrates. Some of the variability in sensitivity is likely to be genetic. We note that four of the suggestive associations found in the GWAS are with genes that are involved in glucose metabolism or have been associated with diabetes.
Resumo:
Human listeners seem to be remarkably able to recognise acoustic sound sources based on timbre cues. Here we describe a psychophysical paradigm to estimate the time it takes to recognise a set of complex sounds differing only in timbre cues: both in terms of the minimum duration of the sounds and the inferred neural processing time. Listeners had to respond to the human voice while ignoring a set of distractors. All sounds were recorded from natural sources over the same pitch range and equalised to the same duration and power. In a first experiment, stimuli were gated in time with a raised-cosine window of variable duration and random onset time. A voice/non-voice (yes/no) task was used. Performance, as measured by d', remained above chance for the shortest sounds tested (2 ms); d's above 1 were observed for durations longer than or equal to 8 ms. Then, we constructed sequences of short sounds presented in rapid succession. Listeners were asked to report the presence of a single voice token that could occur at a random position within the sequence. This method is analogous to the "rapid sequential visual presentation" paradigm (RSVP), which has been used to evaluate neural processing time for images. For 500-ms sequences made of 32-ms and 16-ms sounds, d' remained above chance for presentation rates of up to 30 sounds per second. There was no effect of the pitch relation between successive sounds: identical for all sounds in the sequence or random for each sound. This implies that the task was not determined by streaming or forward masking, as both phenomena would predict better performance for the random pitch condition. Overall, the recognition of familiar sound categories such as the voice seems to be surprisingly fast, both in terms of the acoustic duration required and of the underlying neural time constants.
Resumo:
The Aquivion short-side-chain (SSC) perfluorosulfonic acid (PFSA) ionomer was adopted in catalyst layers (CL) of polymer electrolyte membrane water electrolysers (PEMWE) instead of long-side-chain (LSC) Nafion ionomer. The effects of SSC ionomer content in CL for oxygen evolution reaction were studied in half cell with cyclic voltammetry and steady state linear sweep. In a single cell test the MEA with SSC-PFSA Aquivion ionomer exhibited better thermal stability than the one with LSC-PFSA Nafion ionomer at 90 °C. The cell voltage at a current density of 1 A cm was 1.63 V at 90 °C using the SSC-PFSA Aquivion ionomer binder, Nafion 117 membrane, and without back pressurizing. In a continuous operation the cell voltage degradation rate of the MEA using Aquivion ionomer binder was only about 0.82 mV h.