888 resultados para SHEAR-LAYER
Resumo:
An indirect ELISA using soluble whole cell antigen was used to screen serum samples obtained from breeder and layer flocks some of which had shown clinical or bacteriological evidence of infection with Salmonella Gallinarum or S. Pullorum. There was good correlation between Salmonella infection and the presence of serum samples showing high optical density (OD) values. Sera from seven flocks showing high values were retested using group D (0-1, 9, 12) lipopolysaccharide (LPS) and g,m-H flagella as detecting antigens. Sera from six flocks produced high OD values with LPS and low values with flagella confirming infection with a non-flagellate, group D Salmonella while one produced high values with both antigens indicating mixed infection with another group D serotype.
Resumo:
Forty seven strains of mycobacteria (35 strains isolated from clinical specimens and 12 reference strains) were analyzed for mycobactin and mycolate production by thin-layer chromatography (TLC). Different growth conditions had little or no effect on the production of individual mycobactins and the reproducibility of mycobactin Rf values. Mycolate profiles of isolated strains were compared with those of reference strains. Clinical isolates belonging to the same species showed the same profiles. The combined evaluation of mycobacterial products by TLC allowed the identification of pathogenic and opportunist cultivable mycobacteria. on routine examination, the analysis of mycobactin and mycolate production constitutes an adequate procedure for the characterization and identification of myobacteria.
Resumo:
Supramolecular structures of polyaniline (PANI) and vanadium oxide (V2O5) have been assembled via the electrostatic layer-by-layer (LBL) technique. The films were characterized by vibrational analyses which indicated that the interactions between the two components lead to different properties in the films when compared to sol-gel films. of the neat compounds. In particular, using surface enhanced Raman scattering we were able to probe LBL film properties that depend on which material comprises the topmost layer.
Resumo:
Statement of problem. Titanium has physical and mechanical properties, which have led to its increased use in dental prostheses despite casting difficulties due to high melting point and formation of oxide layers which affect the metal-ceramic bond strength.Purpose. This in vitro study evaluated the shear bond strength of the interface of 2 dental porcelains and pure titanium injected into a mold at 3 different temperatures.Material and methods. Using commercially pure (cp) titanium bars (Titanium, Grade I) melted at 1668degreesC and cast at mold temperatures of 430degreesC, 700degreesC or 900degreesC, 60 specimens were machined to 4 x 4 mm, with a base of 5 x 1 mm. The 4-mm surfaces were airborne-particle abraded with 100 mum aluminum oxide before applying and firing the bonding agent and evaluating the 2 porcelains (Triceram/Triline ti and Vita Titankeramik). Ten specimens were prepared for each temperature and porcelain combination Shear bond testing was performed in a universal testing machine, with a 500-kg load cell and crosshead speed of 0.5 mm/min. The specimens were loaded until failure. The interfaces of representative fractured specimens of each temperature were examined with a scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Data for shear bond strength (MPa) were statistically analyzed by 2-way ANOVA and the Tukey test (alpha = .05).Results. The results showed significant differences for the metal/porcelain interaction effect (P = .0464). There were no significant differences for the 2 porcelains (P = .4250). The Tukey test showed a significant difference between the pair cp Ti 430degreesC Triceram and cp Ti 900degreesC Triceram, with respective mean values and SDs of 59.74 +/- 11.62 and 34.03 +/- 10.35 MPa.Conclusion. Triceram porcelain showed a bond strength decrease with an increase in the mold temperature for casting titanium. The highest bond strength for Vita porcelain and the best metal-ceramic interface observed with the SEM were found with the mold temperature of 700degreesC.
Resumo:
Objective: To evaluate the influence of different cross-head speeds on shear bond strength test on the dentin surface.Methods: One hundred and twenty extracted bovine incisors were embedded in polystyrene resin. The specimens were prepared by wet grinding with 320-, 400- and 600-grit Al2O3 paper exposing dentin. After the application of the adhesive system Single Bond (3M) to etched dentin, the composite resin Z-100 (3M) was applied and light cured. The specimens were randomly assigned to four groups (n = 30). The shear bond strength tests were performed with an EMIC DL 500 universal testing machine at four different cross-head speeds: 0.50 (A); 0.75 (B); 1.00 (C); and 5.00 mm/min (D).Results: the mean values of shear bond strength in MPa (SD) were: A, 11.78 (3.91); B, 11.82 (4.78); C, 16.32 (6.45); D, 15.46 (5.94). The data were analyzed with one-way ANOVA and Tukey's test (alpha = 0.05). The results indicated that A = B < C = D. The fracture pattern was evaluated by visual analysis in a stereomicroscope (25 x). The percentage of fractures that occurred at the adhesive interface were: A, 92.5%; B, 91.6%; C, 70.0%; D, 47.0%. The Student's t-test to percentages (
Resumo:
Thioglycolic acid-capped Use quantum dots (QDs) were assembled on glass substrates with two distinct polyelectrolytes, viz poly(allylamine hydrochloride) (PAH) and poly(amidoamine) (PAMAM), generation 4 dendrimer, via the layer-by-layer (LbL) technique. Films containing up to 30 polyelectrolyte/QD bilayers were prepared. The growth of the multilayers was monitored with UV-vis spectroscopy, which showed an almost linear increase in the absorbance of the 2.8 nm QDs at 535 nm with the number of deposited bilayers. AFM measurements estimated a film thickness of 3 nm per bilayer for the PAH/Cdse films. The adsorption process and the optical properties of the PAMAM/CdSe LbL films were further analyzed layer-by-layer using surface plasmon resonance (SPR), from which a thickness of 3.2 nm was found for a PAMAM/CdSe bilayer. Photoluminescence measurements revealed higher photooxidation of the quantum dots in PAH/CdSe than in PAMAM/CdSe films. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
dThe detection of aromatic compounds from pesticides and industrial wastewater has become of great interest, since these compounds withstand chemical oxidation and biological degradation, accumulating in the environment. In this work, a highly sensitive biosensor for detecting catechol was obtained with the immobilization of Cl-catechol 1,2-dioxygenase (CCD) in nanostructured films. CCD layers were alternated with poly(amidoamine) generation 4 (PAMAM G4) dendrimer using the electrostatic layer-by-layer (LbL) technique. Circular dichroism (CD) measurements indicated that the immobilized CCD preserved the same conformation as in solution. The thickness of the very first CCD layers in the LbL films was estimated at ca. 3.6 nm, as revealed by surface plasmon resonance (SPR). PAMAM/CCD 10-bilayer films were employed in detecting diluted catechol solutions using either an optical or electrical approach. Due to the mild immobilization conditions employed, especially regarding the pH and ionic strength of the dipping solutions, CCD remained active in the films for periods longer than 3 weeks. The optical detection comprised absorption experiments in which the formation of cis-cis muconic acid, resulting from the reaction between CCD and catechol, was monitored by measuring the absorbance at 260 nm after film immersion in catechol solutions. The electrical detection was carried out using LbL films deposited onto gold-interdigitated electrodes immersed in aqueous solutions at different catechol concentrations. Using impedance spectroscopy in a broad frequency range (1Hz-1kHz), we could detect catechol in solutions at concentrations as low as 10(-10) M. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
With the objective of mapping quantitative trait loci (QTLs) for performance and carcass traits, an F-2 chicken population was developed by crossing broiler and layer lines. A total of 2063 F-2 chicks in 21 full-sib families were reared as broilers and slaughtered at 42 days of age. Seventeen performance and carcass traits were measured. Parental (F-0) and F-1 individuals were genotyped with 80 microsatellites from chicken chromosome 1 to select informative markers. Thirty-three informative markers were used for selective genotyping of F-2 individuals with extreme phenotypes for body weight at 42 days of age (BW42). Based on the regions identified by selective genotyping, seven full-sib families (649 F-2 chicks) were genotyped with 26 markers. Quantitative trait loci affecting body weight, feed intake, carcass weight, drums and thighs weight and abdominal fat weight were mapped to regions already identified in other populations. Quantitative trait loci for weights of gizzard, liver, lungs, heart and feet, as well as length of intestine, not previously described in the literature were mapped on chromosome 1. This F-2 population can be used to identify novel QTLs and constitutes a new resource for studies of genes related to growth and carcass traits in poultry.
Resumo:
Molecular-level interactions are found to bind iron tetrasulfonated phthalocyanine (FeTsPc) and the polyelectrolyte poly(allylamine hydrochloride) (PAH) in electroactive layer-by-layer (LBL) films. These interactions have been identified by comparing Fourier transform infrared (FTIR) and Raman spectroscopy data from bulk samples of FeTsPc and PAH with those from FeTsPc/PAH LBL films. of particular importance were the SO3- -NH3 interactions that we believe to bind PAH and FeTsPc and the interactions between unprotonated amine groups of PAH and the coordinating metal of the phthalocyanine. The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the Q band of FeTsPc at 676 nm. Film thickness estimated with profilometry was ca. I I Angstrom per bilayer for films adsorbed on glass. Reflection absorption infrared spectroscopy (RAIRS) revealed an anisotropy in the LBL film adsorbed on gold with FeTsPc molecules oriented perpendicularly to the substrate plane. Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 1.07 and 0.81 V, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/Ag+). The peak shape and current dependence on the scan rate suggest that the process is a diffusion controlled charge transport. In the presence of dopamine, the electroactivity of FeTsPc/PAH LBL films vanishes due to a passivation effect. Dopamine activity is not detected either because the interaction between Fe atoms and NH2 groups prevents dopamine molecules from coordinating with the Fe atoms.