947 resultados para SEASONAL VARIABILITY
Resumo:
Sand seatrout (Cynoscion arenarius) and silver seatrout (C. nothus) are both found within the immediate offshore areas of the Gulf of Mexico, especially around Texas; however information is limited on how much distributional overlap really occurs between these species. In order to investigate spatial and seasonal differences between species, we analyzed twenty years of bay and offshore trawl data collected by biologists of the Coastal Fisheries Division, Texas Parks and Wildlife Department. Sand seatrout and silver seatrout were distributed differently among offshore sampling areas, and salinity and water depth appeared to correlate with their distribution. Additionally, within the northernmost sampling area of the gulf waters, water depth correlated significantly with the presence of silver seatrout, which were found at deeper depths than sand seatrout. There was also an overall significant decrease in silver seatrout abundance during the summer season, when temperatures were at their highest, and this decrease may have indicated a migration farther offshore. Sand seatrout abundance had an inverse relationship with salinity and water depth offshore. In addition, sand seatrout abundance was highest in bays with direct passes to the gulf and correlated with corresponding abundance in offshore areas. These data highlight the seasonal and spatial differences in abundance between sand and silver seatrout and relate these differences to the hydrological and geological features found along the Texas coastline.
Resumo:
Spawning periodicities of white seabass (Atractoscion nobilis) were evaluated by observing spawning behavior, by collecting eggs, and monitoring recognizable sounds produced during the release of gametes. A total of 297 spawning events were documented from 15 male and 47 female white seabass contained within the seminatural confines of a 526-m3 net pen located in Catalina Harbor, Santa Catalina Island, California. Consistent spawning occurred from March through July 2001−03, and peaked in May at a photoperiod of 14 hours. Most spawning occurred within the 2-hour period following sunset or from 19:00−20:00 hours Pacific Standard Time. White seabass spawned at every phase of the lunar cycle; but an increase in successive spawning events followed the new moon. Most spawning occurred in water temperatures from 15 to 18°C, and there was no apparent correlation with tidal cycles. Seasonal and diel spawning periods were directly correlated with increases in the rate, intensity, and variety of white seabass sounds; this correlation may indicate that sounds function to enhance reproductive success. These findings can be extended to further develop seasonal fishery regulations and to better comprehend the role of sound in the reproduction of sound-producing fishes.
Resumo:
King mackerel (Scomberomorus cavalla) are ecologically and economically important scombrids that inhabit U.S. waters of the Gulf of Mexico (GOM) and Atlantic Ocean (Atlantic). Separate migratory groups, or stocks, migrate from eastern GOM and southeastern U.S. Atlantic to south Florida waters where the stocks mix during winter. Currently, all winter landings from a management-defined south Florida mixing zone are attributed to the GOM stock. In this study, the stock composition of winter landings across three south Florida sampling zones was estimated by using stock-specific otolith morphological variables and Fourier harmonics. The mean accuracies of the jackknifed classifications from stepwise linear discriminant function analysis of otolith shape variables ranged from 66−76% for sex-specific models. Estimates of the contribution of the Atlantic stock to winter landings, derived from maximum likelihood stock mixing models, indicated the contribution was highest off southeastern Florida (as high as 82.8% for females in winter 2001−02) and lowest off southwestern Florida (as low as 14.5% for females in winter 2002−03). Overall, results provided evidence that the Atlantic stock contributes a certain, and perhaps a significant (i.e., ≥50%), percentage of landings taken in the management-defined winter mixing zone off south Florida, and the practice of assigning all winter mixing zone landings to the GOM stock should
Resumo:
This study investigates the temporal stability of length- and age-at-maturity estimates for female Pacific cod (Gadus macrocephalus) in the Gulf of Alaska and eastern Bering Sea. Females reached 50% maturity (A50) at 4.4 years in the Gulf of Alaska and at 4.9 years in the eastern Bering Sea. Total body length at 50% maturity (LT50) was significantly smaller (503 mm) in the Gulf of Alaska than in the eastern Bering Sea (580 mm). The estimated length- and age-at-maturity did not differ significantly between winter and spring in either the Gulf of Alaska (1999) or Bering Sea (2003) areas. The results of this study raised the spawning biomass estimate of female Alaskan Pacific cod from 298×103 t for 2005 to 499×103 t for 2006. The increased spawning biomass estimate resulted in an increased over-fishing limit for Pacific cod.
Resumo:
Variation in the allele frequencies of five microsatellite loci was surveyed in 1256 individual spotted seatrout (Cynoscion nebulosus) obtained from 12 bays and estuaries from Laguna Madre, Texas, to Charlotte Harbor, Florida, to St. John’s River on the Florida Atlantic Coast. Texas and Louisiana collection sites were resampled each year for two to four years (1998−2001). Genetic differentiation was observed. Spotted seatrout from Florida waters were strongly differentiated from spotted seatrout collected in Louisiana and Texas. The greatest genetic discontinuity was observed between Tampa Bay and Charlotte Harbor, and Charlotte Harbor seatrout were most similar to Atlantic Coast spotted seatrout. Texas and Louisiana samples were not strongly structured within the northwestern Gulf of Mexico and there was little evidence of temporal differentiation within bays. These findings are contrary to those of earlier analyses with allozymes and mitochondrial DNA (mtDNA) where evidence of spatial differentiation was found for spotted seatrout resident on the Texas coast. The differences in genetic structure observed among these markers may reflect differences in response to selective pressure, or may be due to differences in underlying genetic processes.
Resumo:
This study examines the vulnerability of fish pr oduction in Uganda, particularly as it r elates to the predicted impacts from climate change, using the concept of the value chain. The value chain approach has been recommended as a useful tool to study specific challenges facing a sector resulting from various drivers of change, including climate. Critically, such analyses can reveal context-specific response strategies to enhance a sector (Jacinto and Pomer oy 2010). The specific purpose of the study was to identify curr ent and potential impacts of climate change and corresponding adaptation strategies in fish value chains. The study builds upon information fr om earlier value chain analyses on fisheries and aquaculture production in Uganda to provide a more in-depth understanding of issues facing the fish industry, in particular, those to be incorporated in the CGIAR Resear ch Program Livestock and Fish.
Resumo:
Aspects of the feeding migration of walleye pollock (Theragra chalcogramma) in the eastern Bering Sea (EBS) were investigated by examining the relationship between temperatures and densities of fish encountered during acoustic and bottom trawl surveys conducted in spring and summer between 1982 and 2001. Bottom temperature was used as an indicator of spring and summer warming of the EBS. Clusters of survey stations were identified where the density of walleye pollock generally increased or decreased with increasing water temperature. Inferences about the direction and magnitude of the spring and summer feeding migration were made for five length categories of walleye pollock. Generally, feeding migrations appeared to be northward and shoreward, and the magnitude of this migration appeared to increase with walleye pollock size up to 50 cm. Pollock larger then 50 cm showed limited migratory behavior. Pollock may benefit from northward feeding migrations because of the changes in temperature, zooplankton production, and light conditions. Ongoing climate changes may affect pollock distribution and create new challenges for pollock management in the EBS.
Resumo:
A study of growth and seasonal recruitment of the cephalopod Octopus maya on Campeche Bank, Mexico, was conducted, based on catch at size data sampled from 1983 to 1988. The parameters of a seasonally oscillating version of the von Bertalanffy growth function and total mortality estimates were obtained via the ELEFAN software. It was found that when recruitment occurs early in the year, the growth curve of the next year does not display seasonal oscillations, and conversely. Total mortality estimates ranged from Z = 2.6 to Z = 6.3/year.
Resumo:
A study was undertaken to assess the growth performance of brackishwater tiger shrimp, Penaeus monodon under monoculture in a hardwater seasonal pond in Tamil Nadu, India. A production of 209 kg/ha/110 days was attained at a low stocking density of 1.5/m2.
A simple spreadsheet model to incorporate seasonal growth into length-based stock assessment methods
Resumo:
The paper describes a method by which seasonal growth can be incorporated into length-converted catch curves and cohort analyses using a spreadsheet. The method is based on calculating the length of fish using seasonal growth parameters on a daily basis. A LOOKUP function is then used to find the age corresponding to the length.
Resumo:
During the rainy season in extensive river floodplains and deltaic lowlands, floods render the land unavailable for crop production for several months each year. These waters are considerably underutilized in terms of managed aquatic productivity. This raises the opportunity to enclose parts of these floodwater areas to produce a crop of specifically stocked aquatic organisms aside from the naturally occurring ‘wild’ species that are traditionally fished and are not affected by the culture activity, resulting in more high-quality, nutrient-dense food production and enhanced farm income for all stakeholders, notably the poor. The WorldFish Center and its national partners recently tested the concurrent rice-fish culture in the shallower flooded areas and the alternating rice-fish culture in the deep-flooded areas of Bangladesh and Viet Nam through a community-based management system. Results indicate that community-based fish culture in rice fields can increase fish production by about 600 kg/ha/year in shallow flooded areas and up to 1.5 t/ha/year in deep-flooded areas, without a reduction in the rice yield or wild fish catch.