951 resultados para SCALING
Resumo:
Molecular dynamics simulations have been performed on monatomic sorbates confined within zeolite NaY to obtain the dependence of entropy and self-diffusivity on the sorbate diameter. Previously, molecular dynamics simulations by Santikary and Yashonath J. Phys. Chem. 98, 6368 (1994)], theoretical analysis by Derouane J. Catal. 110, 58 (1988)] as well as experiments by Kemball Adv. Catal. 2, 233 (1950)] found that certain sorbates in certain adsorbents exhibit unusually high self-diffusivity. Experiments showed that the loss of entropy for certain sorbates in specific adsorbents was minimum. Kemball suggested that such sorbates will have high self-diffusivity in these adsorbents. Entropy of the adsorbed phase has been evaluated from the trajectory information by two alternative methods: two-phase and multiparticle expansion. The results show that anomalous maximum in entropy is also seen as a function of the sorbate diameter. Further, the experimental observation of Kemball that minimum loss of entropy is associated with maximum in self-diffusivity is found to be true for the system studied here. A suitably scaled dimensionless self-diffusivity shows an exponential dependence on the excess entropy of the adsorbed phase, analogous to excess entropy scaling rules seen in many bulk and confined fluids. The two trajectory-based estimators for the entropy show good semiquantitative agreement and provide some interesting microscopic insights into entropy changes associated with confinement.
Resumo:
Two different experimental studies of polymer dynamics based on single-molecule fluorescence imaging have recently found evidence of heterogeneities in the widths of the putative tubes that surround filaments of F-actin during their motion in concentrated solution. In one J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchesner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)], the observations were explained in terms of the statistics of a worm-like chain confined to a potential determined self-consistently by a binary collision approximation, and in the other B. Wang, J. Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010)], they were explained in terms of the scaling properties of a random fluid of thin rods. In this paper, we show, using an exact path integral calculation, that the distribution of the length-averaged transverse fluctuations of a harmonically confined weakly bendable rod (one possible realization of a semiflexible chain in a tube), is in good qualitative agreement with the experimental data, although it is qualitatively different in analytic structure from the earlier theoretical predictions. We also show that similar path integral techniques can be used to obtain an exact expression for the time correlation function of fluctuations in the tube cross section. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4712306]
Resumo:
We have developed an efficient fully three-dimensional (3D) reconstruction algorithm for diffuse optical tomography (DOT). The 3D DOT, a severely ill-posed problem, is tackled through a pseudodynamic (PD) approach wherein an ordinary differential equation representing the evolution of the solution on pseudotime is integrated that bypasses an explicit inversion of the associated, ill-conditioned system matrix. One of the most computationally expensive parts of the iterative DOT algorithm, the reevaluation of the Jacobian in each of the iterations, is avoided by using the adjoint-Broyden update formula to provide low rank updates to the Jacobian. In addition, wherever feasible, we have also made the algorithm efficient by integrating along the quadratic path provided by the perturbation equation containing the Hessian. These algorithms are then proven by reconstruction, using simulated and experimental data and verifying the PD results with those from the popular Gauss-Newton scheme. The major findings of this work are as follows: (i) the PD reconstructions are comparatively artifact free, providing superior absorption coefficient maps in terms of quantitative accuracy and contrast recovery; (ii) the scaling of computation time with the dimension of the measurement set is much less steep with the Jacobian update formula in place than without it; and (iii) an increase in the data dimension, even though it renders the reconstruction problem less ill conditioned and thus provides relatively artifact-free reconstructions, does not necessarily provide better contrast property recovery. For the latter, one should also take care to uniformly distribute the measurement points, avoiding regions close to the source so that the relative strength of the derivatives for measurements away from the source does not become insignificant. (c) 2012 Optical Society of America
Resumo:
Chemical reactions inside cells are typically subject to the effects both of the cell's confining surfaces and of the viscoelastic behavior of its contents. In this paper, we show how the outcome of one particular reaction of relevance to cellular biochemistry - the diffusion-limited cyclization of long chain polymers - is influenced by such confinement and crowding effects. More specifically, starting from the Rouse model of polymer dynamics, and invoking the Wilemski-Fixman approximation, we determine the scaling relationship between the mean closure time t(c) of a flexible chain (no excluded volume or hydrodynamic interactions) and the length N of its contour under the following separate conditions: (a) confinement of the chain to a sphere of radius d and (b) modulation of its dynamics by colored Gaussian noise. Among other results, we find that in case (a) when d is much smaller than the size of the chain, t(c) similar to Nd-2, and that in case (b), t(c) similar to N-2/(2 (2H)), H being a number between 1/2 and 1 that characterizes the decay of the noise correlations. H is not known a priori, but values of about 0.7 have been used in the successful characterization of protein conformational dynamics. At this value of H (selected for purposes of illustration), t(c) similar to N-3.4, the high scaling exponent reflecting the slow relaxation of the chain in a viscoelastic medium. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4729041]
Resumo:
This paper presents the effect of nonlocal scaling parameter on the coupled i.e., axial, flexural, shear and contraction, wave propagation in single-walled carbon nanotubes (SWCNTs). The axial and transverse motion of SWCNT is modeled based on first order shear deformation theory (FSDT) and thickness contraction. The governing equations are derived based on nonlocal constitutive relations and the wave dispersion analysis is also carried out. The studies shows that the nonlocal scale parameter introduces certain band gap region in all wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. Explicit expressions are derived for cut-off and escape frequencies of all waves in SWCNT. It is also shown that the cut-off frequencies of shear and contraction mode are independent of the nonlocal scale parameter. The results provided in this article are new and are useful guidance for the study and design of the next generation of nanodevices that make use of the coupled wave propagation properties of single-walled carbon nanotubes.
Resumo:
The spatial search problem on regular lattice structures in integer number of dimensions d >= 2 has been studied extensively, using both coined and coinless quantum walks. The relativistic Dirac operator has been a crucial ingredient in these studies. Here, we investigate the spatial search problem on fractals of noninteger dimensions. Although the Dirac operator cannot be defined on a fractal, we construct the quantum walk on a fractal using the flip-flop operator that incorporates a Klein-Gordon mode. We find that the scaling behavior of the spatial search is determined by the spectral (and not the fractal) dimension. Our numerical results have been obtained on the well-known Sierpinski gaskets in two and three dimensions.
Resumo:
We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.
Resumo:
This paper is a review prepared for the second Marseille Colloquium on the mechanics of turbulence, held in 2011, 50 years after the first. The review covers recent developments in our understanding of the large-scale dynamics of cumulus cloud flows and of the atmospheric boundary layer in the low-wind convective regime that is often encountered in the tropics. It has recently been shown that a variety of cumulus cloud forms and life cycles can be experimentally realized in the laboratory, with the transient diabatic plume taken as the flow model for a cumulus cloud. The plume is subjected to diabatic heating scaled to be dynamically similar to heat release from phase changes in clouds. The experiments are complemented by exact numerical solutions of the Navier-Stokes-Boussinesq equations for plumes with scaled off-source heating. The results show that the Taylor entrainment coefficient first increases with heating, reaches a positive maximum and then drops rapidly to zero or even negative values. This reduction in entrainment is a consequence of structural changes in the flow, smoothing out the convoluted boundaries in the non-diabatic plume, including the tongues engulfing the ambient flow. This is accompanied by a greater degree of mixedness in the core flow because of lower dilution by the ambient fluid. The cloud forms generated depend strongly on the history of the diabatic heating profile in the vertical direction. The striking effects of heating on the flow are attributable to the operation of the baroclinic torque due to the temperature field. The mean baroclinic torque is shown to peak around a quasi-cylindrical sheet situated midway between the axis of the flow and the edges. This torque is shear-enhancing and folds down the engulfment tongues. The increase in mixedness can be traced to an explosive growth in the enstrophy, triggered by a strong fluctuating baroclinic torque that acts as a source, especially at the higher wave numbers, thus enhancing the mixedness. In convective boundary layers field measurements show that, under conditions prevailing in the tropics, the eddy fluxes of momentum and energy do not follow the Monin-Obukhov similarity. Instead, the eddy momentum flux is found to be linear in the wind speed at low winds; and the eddy heat flux is, to a first approximation, governed by free convection laws, with wind acting as a small perturbation on a regime of free convection. A new boundary layer code, based on heat flux scaling rather than wall-stress scaling, shows promising improvements in predictive skills of a general circulation model.
Resumo:
Wave propagation in graphene sheet embedded in elastic medium (polymer matrix) has been a topic of great interest in nanomechanics of graphene sheets, where the equivalent continuum models are widely used. In this manuscript, we examined this issue by incorporating the nonlocal theory into the classical plate model. The influence of the nonlocal scale effects has been investigated in detail. The results are qualitatively different from those obtained based on the local/classical plate theory and thus, are important for the development of monolayer graphene-based nanodevices. In the present work, the graphene sheet is modeled as an isotropic plate of one-atom thick. The chemical bonds are assumed to be formed between the graphene sheet and the elastic medium. The polymer matrix is described by a Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation of the surrounding elastic medium. When the shear effects are neglected, the model reduces to Winkler foundation model. The normal pressure or Winkler elastic foundation parameter is approximated as a series of closely spaced, mutually independent, vertical linear elastic springs where the foundation modulus is assumed equivalent to stiffness of the springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of flexural wave propagation model is also derived and the results of the wave dispersion analysis are shown for both local and nonlocal elasticity calculations. From this analysis we show that the elastic matrix highly affects the flexural wave mode and it rapidly increases the frequency band gap of flexural mode. The flexural wavenumbers obtained from nonlocal elasticity calculations are higher than the local elasticity calculations. The corresponding wave group speeds are smaller in nonlocal calculation as compared to local elasticity calculation. The effect of y-directional wavenumber (eta(q)) on the spectrum and dispersion relations of the graphene embedded in polymer matrix is also observed. We also show that the cut-off frequencies of flexural wave mode depends not only on the y-direction wavenumber but also on nonlocal scaling parameter (e(0)a). The effect of eta(q) and e(0)a on the cut-off frequency variation is also captured for the cases of with and without elastic matrix effect. For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(0)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this article. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the possibility of projecting low-dimensional chaos from spatiotemporal dynamics of a model for a kind of plastic instability observed under constant strain rate deformation conditions. We first discuss the relationship between the spatiotemporal patterns of the model reflected in the nature of dislocation bands and the nature of stress serrations. We show that at low applied strain rates, there is a one-to-one correspondence with the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that the model equations are spatiotemporally chaotic by demonstrating the number of positive Lyapunov exponents and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates corresponding to spatially uncorrelated dislocation bands exhibit features of low-dimensional chaos. This is made quantitative by demonstrating that the model equations can be approximately reduced to space-independent model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However, the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing propensity for propagation of the dislocation bands.
Resumo:
Recently it has been shown that the fidelity of the ground state of a quantum many-body system can be used todetect its quantum critical points (QCPs). If g denotes the parameter in the Hamiltonian with respect to which the fidelity is computed, we find that for one-dimensional models with large but finite size, the fidelity susceptibility chi(F) can detect a QCP provided that the correlation length exponent satisfies nu < 2. We then show that chi(F) can be used to locate a QCP even if nu >= 2 if we introduce boundary conditions labeled by a twist angle N theta, where N is the system size. If the QCP lies at g = 0, we find that if N is kept constant, chi(F) has a scaling form given by chi(F) similar to theta(-2/nu) f (g/theta(1/nu)) if theta << 2 pi/N. We illustrate this both in a tight-binding model of fermions with a spatially varying chemical potential with amplitude h and period 2q in which nu = q, and in a XY spin-1/2 chain in which nu = 2. Finally we show that when q is very large, the model has two additional QCPs at h = +/- 2 which cannot be detected by studying the energy spectrum but are clearly detected by chi(F). The peak value and width of chi(F) seem to scale as nontrivial powers of q at these QCPs. We argue that these QCPs mark a transition between extended and localized states at the Fermi energy. DOI: 10.1103/PhysRevB.86.245424
Resumo:
Ultrasonic wave propagation in a graphene sheet, which is embedded in an elastic medium, is studied using nonlocal elasticity theory incorporating small-scale effects. The graphene sheet is modeled as an one-atom thick isotropic plate and the elastic medium/substrate is modeled as distributed springs. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. After that, an ultrasonic type of wave propagation model is also derived. The explicit expressions for the cut-off frequencies are also obtained as functions of the nonlocal scaling parameter and the y-directional wavenumber. Local elasticity shows that the wave will propagate even at higher frequencies. But nonlocal elasticity predicts that the waves can propagate only up to certain frequencies (called escape frequencies), after which the wave velocity becomes zero. The results also show that the escape frequencies are purely a function of the nonlocal scaling parameter. The effect of the elastic medium is captured in the wave dispersion analysis and this analysis is explained with respect to both local and nonlocal elasticity. The simulations show that the elastic medium affects only the flexural wave mode in the graphene sheet. The presence of the elastic matrix increases the band gap of the flexural mode. The present results can provide useful guidance for the design of next-generation nanodevices in which graphene-based composites act as a major element.
Resumo:
The implementation of semiconductor circuits and systems in nano-technology makes it possible to achieve high speed, lower voltage level and smaller area. The unintended and undesirable result of this scaling is that it makes integrated circuits susceptible to soft errors normally caused by alpha particle or neutron hits. These events of radiation strike resulting into bit upsets referred to as single event upsets(SEU), become increasingly of concern for the reliable circuit operation in the field. Storage elements are worst hit by this phenomenon. As we further scale down, there is greater interest in reliability of the circuits and systems, apart from the performance, power and area aspects. In this paper we propose an improved 12T SEU tolerant SRAM cell design. The proposed SRAM cell is economical in terms of area overhead. It is easy to fabricate as compared to earlier designs. Simulation results show that the proposed cell is highly robust, as it does not flip even for a transient pulse with 62 times the Q(crit) of a standard 6T SRAM cell.
Resumo:
The deformation dynamics of metal foils (<0.25 mm thick) subjected to micro-blast wave are presented in this paper. The energy of micro-blast wave emanating from the open end of a polymer tube is used to deliver micro-particles for bio-medical applications. In these experiments metal foils are used to transfer the energy of the micro-blast wave to the micro-particles. Using cubic root scaling law the over pressure of the blast wave at the open end of the polymer tube is estimated and using this peak plate over pressure is estimated. The finite element analysis is used to estimate the velocity profile of the deforming metal foils. The finite element analysis results are compared with experimental results for the maximum deformation and deformed shape. Based on the deformation velocity, metal foil to be used for experiments is selected. Among the materials investigated 0.1 mm thick brass foil has the maximum velocity of 205 m/s and is used in the experiments. It is found from finite element analysis that the particles deposited within a radius of 0.5 mm will leave the foil with nearly equal velocity (error < 5%). The spray cone angle which is the angle of deviation of the path of particles from the axis of the polymer tube is also estimated and found to be less than 7 degrees up to a radius of 0.75 mm. Illustrative experiments are carried out to deliver micro particles (0.7 mu m diameter tungsten) into plant tissues. Particle penetration depth up to 460 mu m was achieved in ground tissue of potato tuber. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Dynamic Voltage and Frequency Scaling (DVFS) is a very effective tool for designing trade-offs between energy and performance. In this paper, we use a formal Petri net based program performance model that directly captures both the application and system properties, to find energy efficient DVFS settings for CMP systems, that satisfy a given performance constraint, for SPMD multithreaded programs. Experimental evaluation shows that we achieve significant energy savings, while meeting the performance constraints.