893 resultados para Rough interfaces
Resumo:
Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed.
Resumo:
Understanding the microscopic mechanisms of electronic excitation in organic photovoltaic cells is a challenging problem in the design of efficient devices capable of performing sunlight harvesting. Here we develop and apply an ab initio approach based on time-dependent density functional theory and Ehrenfest dynamics to investigate photoinduced charge transfer in small organic molecules. Our calculations include mixed quantum–classical dynamics with ions moving classically and electrons quantum mechanically, where no experimental external parameter other than the material geometry is required. We show that the behavior of photocarriers in zinc phthalocyanine (ZnPc) and C60 systems, an effective prototype system for organic solar cells, is sensitive to the atomic orientation of the donor and the acceptor units as well as the functionalization of covalent molecules at the interface. In particular, configurations with the ZnPc molecules facing on C60 facilitate charge transfer between substrate and molecules that occurs within 200 fs. In contrast, configurations where ZnPc is tilted above C60 present extremely low carrier injection efficiency even at longer times as an effect of the larger interfacial potential level offset and higher energetic barrier between the donor and acceptor molecules. An enhancement of charge injection into C60 at shorter times is observed as binding groups connect ZnPc and C60 in a dyad system. Our results demonstrate a promising way of designing and controlling photoinduced charge transfer on the atomic level in organic devices that would lead to efficient carrier separation and maximize device performance.
Resumo:
[EN]We investigate mechanisms which can endow the computer with the ability of describing a human face by means of computer vision techniques. This is a necessary requirement in order to develop HCI approaches which make the user feel himself/herself perceived. This paper describes our experiences considering gender, race and the presence of moustache and glasses. This is accomplished comparing, on a set of 6000 facial images, two di erent face representation approaches: Principal Components Analysis (PCA) and Gabor lters. The results achieved using a Support Vector Machine (SVM) based classi er are promising and particularly better for the second representation approach.
Resumo:
[EN]This paper describes in detail a real-time multiple face detection system for video streams. The system adds to the good performance provided by a window shift approach, the combination of different cues available in video streams due to temporal coherence. The results achieved by this combined solution outperform the basic face detector obtaining a 98% success rate for around 27000 images, providing additionally eye detection and a relation between the successive detections in time by means of detection threads.
Resumo:
[EN]Vision-based applications designed for humanmachine interaction require fast and accurate hand detection. However, previous works on this field assume different constraints, like a limitation in the number of detected gestures, because hands are highly complex objects to locate. This paper presents an approach which changes the detection target without limiting the number of detected gestures. Using a cascade classifier we detect hands based on their wrists. With this approach, we introduce two main contributions: (1) a reliable segmentation, independently of the gesture being made and (2) a training phase faster than previous cascade classifier based methods. The paper includes experimental evaluations with different video streams that illustrate the efficiency and suitability for perceptual interfaces.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
The spirit behind the creation of the task force is one of good government. It rests upon the basic premise that taxpayers demand the best service possible for their tax dollars. Combine this demand for efficiency with Iowa's aging roadway system, and a projected increase in the state's vehicle miles traveled, the need to examine cost savings becomes apparent. Beyond the rational for good and efficient government, however, is a major concern for potential future reductions in Federal highway funds. Iowa is likely entering a period of needing an expanded transportation system with at best a static capacity for maintenance and construction.
Resumo:
We know that classical thermodynamics even out of equilibrium always leads to stable situation which means degradation and consequently d sorder. Many experimental evidences in different fields show that gradation and order (symmetry breaking) during time and space evolution may appear when maintaining the system far from equilibrium. Order through fluctuations, stochastic processes which occur around critical points and dissipative structures are the fundamental background of the Prigogine-Glansdorff and Nicolis theory. The thermodynamics of macroscopic fluctuations to stochastic approach as well as the kinetic deterministic laws allow a better understanding of the peculiar fascinating behavior of organized matter. The reason for the occurence of this situation is directly related to intrinsic non linearities of the different mechanisms responsible for the evolution of the system. Moreover, when dealing with interfaces separating two immiscible phases (liquid - gas, liquid -liquid, liquid - solid, solid - solid), the situation is rather more complicated. Indeed coupling terms playing the major role in the conditions of instability arise from the peculiar singular static and dynamic properties of the surface and of its vicinity. In other words, the non linearities are not only intrinsic to classical steps involving feedbacks, but they may be imbedded with the non-autonomous character of the surface properties. In order to illustrate our goal we discuss three examples of ordering in far from equilibrium conditions: i) formation of chemical structures during the oxidation of metals and alloys; ii) formation of mechanical structures during the oxidation of metals iii) formation of patterns at a solid-liquid moving interface due to supercooling condition in a melt of alloy. © 1984, Walter de Gruyter. All rights reserved.
Resumo:
L’accessibilité universelle est de nos jours très importante pour nos villes, car elle permet à toute personne, ayant des incapacités physiques ou non, de mener à bien ses activités socio-professionnelles. À travers le monde, plusieurs projets ont vu le jour comme AXS Map à New York ou AccesSIG en France. Au Canada, un projet multidisciplinaire nommé MobiliSIG ayant pour lieu d’expérimentation la ville de Québec a vu le jour en 2013. L’objectif du projet MobiliSIG est de concevoir et développer une application multimodale d’assistance au déplacement des personnes à mobilité réduite. Ce projet se concentre principalement sur la constitution d’une base de données d’accessibilité se référant au modèle PPH (Processus de Production du Handicap). Nos travaux visent à définir la diffusion d’itinéraires adaptés, adaptables et adaptatifs liés à des contextes multi-utilisateurs, multiplateformes, multimodaux (interfaces et transports) et multi-environnements. Après une revue de littérature et afin d’identifier et définir les besoins liés à cette diffusion des données de navigation, nous nous sommes attelés à la description de plusieurs scénarios pour mieux comprendre les besoins des utilisateurs : planification d’un déplacement et navigation dans le milieu urbain ; parcours multimodal ; recherche d’un point d’intérêt (toilettes accessibles). Cette démarche nous a permis également d’identifier les modes de communication et représentations souhaitées de l’itinéraire (carte, texte, image, parole, …) et de proposer une approche basée sur la transformation de l’itinéraire reçu de la base de données d’accessibilité. Cette transformation est effectuée en tenant compte des préférences de l’utilisateur, de son appareil et de son environnement. La diffusion de l’itinéraire se fait ensuite par un service web de diffusion conçu selon le standard du W3C sur les architectures multimodales (MMI) en combinaison avec le concept de la plasticité des interfaces. Le prototype développé a permis d’avoir comme résultat un système qui diffuse de façon générique l’information de navigation adaptée, adaptable et adaptative à l’utilisateur, à son appareil et à son environnement.
Resumo:
Autologous nerve grafts are the current gold standard for the repair of peripheral nerve injuries. However, there is a need to develop an alternative to this technique, as donor-site morbidities such as neuroma formation and permanent loss of function are a few of the limitations concerned with this technique. Artificial nerve conduits have therefore emerged as an alternative for the repair of short peripheral nerve defects of less than 30 mm, however they do not surpass autologous nerve grafts clinically. To develop a nerve conduit that supports regeneration over long nerve gaps and in large diameter nerves, researchers have focused on functionalizing of the conduits by studying the components that enhance nerve regeneration such as micro/nano-topography, growth factor delivery systems, supportive cells and extracellular matrix (ECM) proteins as well as understanding the complex biological reactions that take place during peripheral nerve regeneration. This thesis presents strategies to improve peripheral nerve interfaces to better the regenerative potential by using dorsal root ganglions (DRGs) isolated from neonatal rats as an in vitro model of nerve regeneration. The work started off by investigating the usefulness of a frog foam protein Ranaspumin-2 (Rsn2) to coat biomaterials for compatibility, this lead to the discovery of temporary cell adhesion on polydimethylsiloxane (PDMS), which was investigated as a suitable tool to derive cell-sheets for nerve repair. The influence of Rsn2 anchored to specific adhesion peptide sequences, such as isoleucine-lysine-valine-alanine-valine (IKVAV), a sequence derived from laminin proven to promote cell adhesion and neurite outgrowth, was tested as a useful means to influence nerve regeneration. This approach improves the axonal outgrowth and maintains outgrowth long term. Based on the hypothesis that combinational modulation of substrate topography, stiffness and neurotrophic support, affects axonal outgrowth in whole DRGs, dissociated DRGs were used to assess if these factors similarly act at the single cell level. Rho associated protein kinase (ROCK) and myosin II inhibitors, which affect cytoskeletal contractility, were used to influence growth cone traction forces and have shown that these factors work in combination by interfering with growth cone dynamic creating a different response in axonal outgrowth at the single cell level.
Resumo:
Relatório de estágio para a obtenção do grau de mestre na área de Educação e Comunicação Multimédia
Resumo:
Relatório de Estágio para a obtenção do grau de Mestre na área de Educação e Comunicação Multimédia
Resumo:
Scale not given.