887 resultados para Root-cause


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation deals with aspects of sequential data assimilation (in particular ensemble Kalman filtering) and numerical weather forecasting. In the first part, the recently formulated Ensemble Kalman-Bucy (EnKBF) filter is revisited. It is shown that the previously used numerical integration scheme fails when the magnitude of the background error covariance grows beyond that of the observational error covariance in the forecast window. Therefore, we present a suitable integration scheme that handles the stiffening of the differential equations involved and doesn’t represent further computational expense. Moreover, a transform-based alternative to the EnKBF is developed: under this scheme, the operations are performed in the ensemble space instead of in the state space. Advantages of this formulation are explained. For the first time, the EnKBF is implemented in an atmospheric model. The second part of this work deals with ensemble clustering, a phenomenon that arises when performing data assimilation using of deterministic ensemble square root filters in highly nonlinear forecast models. Namely, an M-member ensemble detaches into an outlier and a cluster of M-1 members. Previous works may suggest that this issue represents a failure of EnSRFs; this work dispels that notion. It is shown that ensemble clustering can be reverted also due to nonlinear processes, in particular the alternation between nonlinear expansion and compression of the ensemble for different regions of the attractor. Some EnSRFs that use random rotations have been developed to overcome this issue; these formulations are analyzed and their advantages and disadvantages with respect to common EnSRFs are discussed. The third and last part contains the implementation of the Robert-Asselin-Williams (RAW) filter in an atmospheric model. The RAW filter is an improvement to the widely popular Robert-Asselin filter that successfully suppresses spurious computational waves while avoiding any distortion in the mean value of the function. Using statistical significance tests both at the local and field level, it is shown that the climatology of the SPEEDY model is not modified by the changed time stepping scheme; hence, no retuning of the parameterizations is required. It is found the accuracy of the medium-term forecasts is increased by using the RAW filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a consequence of land use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2. However, natural forests are often intimate mixtures of a number of co-occurring species. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free-air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 µmol mol-1) for four years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass, and morphology responded differentially to elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterised with data from species grown in monoculture may be underestimating the belowground response to global change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since megakaryocytes are the cellular precursors of platelets we have investigated whether they share responses to platelet agonists, in particular collagen. Although previous studies have reported responses to thrombin in non-human megakaryocytes, through studies of single cell calcium responses and protein tyrosine-phosphorylation we demonstrate for the first time that both isolated human megakaryocytes and CD41/61-positive megakaryocytes derived in culture from CD34+ cells share responses to the platelet agonists collagen, collagen-related peptide and thrombin. The responses to either collagen or CRP were seen only in the most mature megakaryocytes and not in megakaryocyte-like cell lines, suggesting that the response to collagen is a characteristic developed late during megakaryocyte differentiation. These primary cells offer the opportunity to use many molecular and cellular techniques to study and manipulate signalling events in response to platelet receptor agonists, which cannot be performed in the small, anucleate platelet itself.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims Forest trees directly contribute to carbon cycling in forest soils through the turnover of their fine roots. In this study we aimed to calculate root turnover rates of common European forest tree species and to compare them with most frequently published values. Methods We compiled available European data and applied various turnover rate calculation methods to the resulting database. We used Decision Matrix and Maximum-Minimum formula as suggested in the literature. Results Mean turnover rates obtained by the combination of sequential coring and Decision Matrix were 0.86 yr−1 for Fagus sylvatica and 0.88 yr−1 for Picea abies when maximum biomass data were used for the calculation, and 1.11 yr−1 for both species when mean biomass data were used. Using mean biomass rather than maximum resulted in about 30 % higher values of root turnover. Using the Decision Matrix to calculate turnover rate doubled the rates when compared to the Maximum-Minimum formula. The Decision Matrix, however, makes use of more input information than the Maximum-Minimum formula. Conclusions We propose that calculations using the Decision Matrix with mean biomass give the most reliable estimates of root turnover rates in European forests and should preferentially be used in models and C reporting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was conducted in the Department of Plant Breeding and Genetics,Sindh Agriculture University, Tandojam, Pakistan during the year 2009. Sixteen spring wheat cultivars (Triticum aestivum L.) were screened under osmotic stress with three treatments i.e. control-no PEG (polyethylene glycol), 15 percent and 25 percent PEG-6000 solution. The analysis of variance indicated significant differences among treatments for all seedling traits except seed germination percentage. Varieties also differed significantly in germination percentage, coleoptile length, shoot root length, shoot weight, root/shoot ratio and seed vigour index. However, shoot and root weights were non-significant. Significant interactions revealed that cultivars responded variably to osmotic stress treatments; hence provided better opportunity to select drought tolerant cultivars at seedling growth stages. The relative decrease over averages due to osmotic stress was 0.8 percent in seed germination, 53 percent in coleoptile length 62.9 percent in shoot length, 74.4 percent in root length, 50.6 percent in shoot weight, 45.1 percent in root weight, 30.2 percent in root/shoot ratio and 68.5 percent in seed vigour index. However, relative decrease of individual variety for various seedling traits could be more meaningful which indicated that cultivar TD-1 showed no reduction in coleoptile length, while minimum decline was noted in Anmol. For shoot length, cultivar Sarsabz expressed minimum reduction followed by Anmol. However, cultivars Anmol, Moomal, Inqalab-91, and Pavan gave almost equally lower reductions for root length suggesting their higher stress tolerance. In other words, cultivars Anmol, Moomal, Inqalab-91, Sarsabz, TD-1, ZA-77 and Pavan had relatively longer coleoptiles, shoots and roots, and were regarded as drought tolerant. Correlation coefficients among seedlings traits were significant and positive for all traits except germination percentage which had no significant correlation with any of other trait. The results indicated that increase in one trait may cause simultaneous increase in other traits; hence selection for any of these seedling attributes will lead to develop drought tolerant wheat cultivars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteases that are released during inflammation and injury cleave protease-activated receptor 2 (PAR2) on primary afferent neurons to cause neurogenic inflammation and hyperalgesia. PAR2-induced thermal hyperalgesia depends on sensitization of transient receptor potential vanilloid receptor 1 (TRPV1), which is gated by capsaicin, protons and noxious heat. However, the signalling mechanisms by which PAR2 sensitizes TRPV1 are not fully characterized. Using immunofluorescence and confocal microscopy, we observed that PAR2 was colocalized with protein kinase (PK) Cepsilon and PKA in a subset of dorsal root ganglia neurons in rats, and that PAR2 agonists promoted translocation of PKCepsilon and PKA catalytic subunits from the cytosol to the plasma membrane of cultured neurons and HEK 293 cells. Subcellular fractionation and Western blotting confirmed this redistribution of kinases, which is indicative of activation. Although PAR2 couples to phospholipase Cbeta, leading to stimulation of PKC, we also observed that PAR2 agonists increased cAMP generation in neurons and HEK 293 cells, which would activate PKA. PAR2 agonists enhanced capsaicin-stimulated increases in [Ca2+]i and whole-cell currents in HEK 293 cells, indicating TRPV1 sensitization. The combined intraplantar injection of non-algesic doses of PAR2 agonist and capsaicin decreased the latency of paw withdrawal to radiant heat in mice, indicative of thermal hyperalgesia. Antagonists of PKCepsilon and PKA prevented sensitization of TRPV1 Ca2+ signals and currents in HEK 293 cells, and suppressed thermal hyperalgesia in mice. Thus, PAR2 activates PKCepsilon and PKA in sensory neurons, and thereby sensitizes TRPV1 to cause thermal hyperalgesia. These mechanisms may underlie inflammatory pain, where multiple proteases are generated and released.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) comprise a receptor for calcitonin gene related peptide (CGRP) and intermedin. Although CGRP is widely expressed in the nervous system, less is known about the localization of CLR and RAMP1. To localize these proteins, we raised antibodies to CLR and RAMP1. Antibodies specifically interacted with CLR and RAMP1 in HEK cells coexpressing rat CLR and RAMP1, determined by Western blotting and immunofluorescence. Fluorescent CGRP specifically bound to the surface of these cells and CGRP, CLR, and RAMP1 internalized into the same endosomes. CLR was prominently localized in nerve fibers of the myenteric and submucosal plexuses, muscularis externa and lamina propria of the gastrointestinal tract, and in the dorsal horn of the spinal cord of rats. CLR was detected at low levels in the soma of enteric, dorsal root ganglia (DRG), and spinal neurons. RAMP1 was also localized to enteric and DRG neurons and the dorsal horn. CLR and RAMP1 were detected in perivascular nerves and arterial smooth muscle. Nerve fibers containing CGRP and intermedin were closely associated with CLR fibers in the gastrointestinal tract and dorsal horn, and CGRP and CLR colocalized in DRG neurons. Thus, CLR and RAMP1 may mediate the effects of CGRP and intermedin in the nervous system. However, mRNA encoding RAMP2 and RAMP3 was also detected in the gastrointestinal tract, DRG, and dorsal horn, suggesting that CLR may associate with other RAMPs in these tissues to form a receptor for additional peptides such as adrenomedullin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammatory proteases (mast cell tryptase and trypsins) cleave protease-activated receptor 2 (PAR2) on spinal afferent neurons and cause persistent inflammation and hyperalgesia by unknown mechanisms. We determined whether transient receptor potential vanilloid receptor 1 (TRPV1), a cation channel activated by capsaicin, protons, and noxious heat, mediates PAR2-induced hyperalgesia. PAR2 was coexpressed with TRPV1 in small- to medium-diameter neurons of the dorsal root ganglia (DRG), as determined by immunofluorescence. PAR2 agonists increased intracellular [Ca2+] ([Ca2+]i) in these neurons in culture, and PAR2-responsive neurons also responded to the TRPV1 agonist capsaicin, confirming coexpression of PAR2 and TRPV1. PAR2 agonists potentiated capsaicin-induced increases in [Ca2+]i in TRPV1-transfected human embryonic kidney (HEK) cells and DRG neurons and potentiated capsaicin-induced currents in DRG neurons. Inhibitors of phospholipase C and protein kinase C (PKC) suppressed PAR2-induced sensitization of TRPV1-mediated changes in [Ca2+]i and TRPV1 currents. Activation of PAR2 or PKC induced phosphorylation of TRPV1 in HEK cells, suggesting a direct regulation of the channel. Intraplantar injection of a PAR2 agonist caused persistent thermal hyperalgesia that was prevented by antagonism or deletion of TRPV1. Coinjection of nonhyperalgesic doses of PAR2 agonist and capsaicin induced hyperalgesia that was inhibited by deletion of TRPV1 or antagonism of PKC. PAR2 activation also potentiated capsaicin-induced release of substance P and calcitonin gene-related peptide from superfused segments of the dorsal horn of the spinal cord, where they mediate hyperalgesia. We have identified a novel mechanism by which proteases that activate PAR2 sensitize TRPV1 through PKC. Antagonism of PAR2, TRPV1, or PKC may abrogate protease-induced thermal hyperalgesia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four established mature tree species (Aesculus hippocastanum L., Betula pendula Roth., Primus avium L. and Quercus rohur L.) commonly planted in UK urban landscapes were subjected to soil injections of the carbohydrate sucrose at 25, 50 and 70g per litre of water. Fine root dry weight was recorded at month 5 following soil injections. Soil injections of sucrose significantly increased fine root dry weight compared to controls, however; growth responses were influenced by species and the concentration of sucrose applied. Results indicate soil injections of sucrose ≥ 50g litre of water may be able to improve root growth of established mature trees. Such a response is desirable as root damage following construction is a frequent problem encountered by established trees growing in UK towns and cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims Potatoes have an inadequate rooting system for efficient acquisition of water and minerals and use disproportionate amounts of irrigation and fertilizer. This research determines whether significant variation in rooting characteristics of potato exists, which characters correlate with final yield and whether a simple screen for rooting traits could be developed. Methods Twenty-eight genotypes of Solanum tuberosum groups Tuberosum and Phureja were grown in the field; eight replicate blocks to final harvest, while entire root systems were excavated from four blocks. Root classes were categorised and measured. The same measurements were made on these genotypes in the glasshouse, 2 weeks post emergence. Results In the field, total root length varied from 40 m to 112 m per plant. Final yield was correlated negatively with basal root specific root length and weakly but positively with total root weight. Solanum tuberosum group Phureja genotypes had more numerous roots and proportionally more basal than stolon roots compared with Solanum tuberosum, group Tuberosum genotypes. There were significant correlations between glasshouse and field measurements. Conclusions Our data demonstrate that variability in rooting traits amongst commercially available potato genotypes exists and a robust glasshouse screen has been developed. By measuring potato roots as described in this study, it is now possible to assess rooting traits of large populations of potato genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nearly all chemistry–climate models (CCMs) have a systematic bias of a delayed springtime breakdown of the Southern Hemisphere (SH) stratospheric polar vortex, implying insufficient stratospheric wave drag. In this study the Canadian Middle Atmosphere Model (CMAM) and the CMAM Data Assimilation System (CMAM-DAS) are used to investigate the cause of this bias. Zonal wind analysis increments from CMAMDAS reveal systematic negative values in the stratosphere near 608S in winter and early spring. These are interpreted as indicating a bias in the model physics, namely, missing gravity wave drag (GWD). The negative analysis increments remain at a nearly constant height during winter and descend as the vortex weakens, much like orographic GWD. This region is also where current orographic GWD parameterizations have a gap in wave drag, which is suggested to be unrealistic because of missing effects in those parameterizations. These findings motivate a pair of free-runningCMAMsimulations to assess the impact of extra orographicGWDat 608S. The control simulation exhibits the cold-pole bias and delayed vortex breakdown seen in the CCMs. In the simulation with extra GWD, the cold-pole bias is significantly reduced and the vortex breaks down earlier. Changes in resolved wave drag in the stratosphere also occur in response to the extra GWD, which reduce stratospheric SH polar-cap temperature biases in late spring and early summer. Reducing the dynamical biases, however, results in degraded Antarctic column ozone. This suggests that CCMs that obtain realistic column ozone in the presence of an overly strong and persistent vortex may be doing so through compensating errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide- and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.