914 resultados para Robot operating system
Resumo:
Previous work has shown that robot navigation systems that employ an architecture based upon the idiotypic network theory of the immune system have an advantage over control techniques that rely on reinforcement learning only. This is thought to be a result of intelligent behaviour selection on the part of the idiotypic robot. In this paper an attempt is made to imitate idiotypic dynamics by creating controllers that use reinforcement with a number of different probabilistic schemes to select robot behaviour. The aims are to show that the idiotypic system is not merely performing some kind of periodic random behaviour selection, and to try to gain further insight into the processes that govern the idiotypic mechanism. Trials are carried out using simulated Pioneer robots that undertake navigation exercises. Results show that a scheme that boosts the probability of selecting highly-ranked alternative behaviours to 50% during stall conditions comes closest to achieving the properties of the idiotypic system, but remains unable to match it in terms of all round performance.
Resumo:
The suitable operation of mobile robots when providing Ambient Assisted Living (AAL) services calls for robust object recognition capabilities. Probabilistic Graphical Models (PGMs) have become the de-facto choice in recognition systems aiming to e ciently exploit contextual relations among objects, also dealing with the uncertainty inherent to the robot workspace. However, these models can perform in an inco herent way when operating in a long-term fashion out of the laboratory, e.g. while recognizing objects in peculiar con gurations or belonging to new types. In this work we propose a recognition system that resorts to PGMs and common-sense knowledge, represented in the form of an ontology, to detect those inconsistencies and learn from them. The utilization of the ontology carries additional advantages, e.g. the possibility to verbalize the robot's knowledge. A primary demonstration of the system capabilities has been carried out with very promising results.
Resumo:
Previous work has shown that high-temperature short-term spike thermal annealing of hydrogenated amorphous silicon (a-Si:H) photovoltaic thermal (PVT) systems results in higher electrical energy output. The relationship between temperature and performance of a-Si:H PVT is not simple as high temperatures during thermal annealing improves the immediate electrical performance following an anneal, but during the anneal it creates a marked drop in electrical performance. In addition, the power generation of a-Si:H PVT depends on both the environmental conditions and the Staebler-Wronski Effect kinetics. In order to improve the performance of a-Si:H PVT systems further, this paper reports on the effect of various dispatch strategies on system electrical performance. Utilizing experimental results from thermal annealing, an annealing model simulation for a-Si:Hbased PVT was developed and applied to different cities in the U.S. to investigate potential geographic effects on the dispatch optimization of the overall electrical PVT systems performance and annual electrical yield. The results showed that spike thermal annealing once per day maximized the improved electrical energy generation. In the outdoor operating condition this ideal behavior deteriorates and optimization rules are required to be implemented.
Resumo:
Efficient and reliable techniques for power delivery and utilization are needed to account for the increased penetration of renewable energy sources in electric power systems. Such methods are also required for current and future demands of plug-in electric vehicles and high-power electronic loads. Distributed control and optimal power network architectures will lead to viable solutions to the energy management issue with high level of reliability and security. This dissertation is aimed at developing and verifying new techniques for distributed control by deploying DC microgrids, involving distributed renewable generation and energy storage, through the operating AC power system. To achieve the findings of this dissertation, an energy system architecture was developed involving AC and DC networks, both with distributed generations and demands. The various components of the DC microgrid were designed and built including DC-DC converters, voltage source inverters (VSI) and AC-DC rectifiers featuring novel designs developed by the candidate. New control techniques were developed and implemented to maximize the operating range of the power conditioning units used for integrating renewable energy into the DC bus. The control and operation of the DC microgrids in the hybrid AC/DC system involve intelligent energy management. Real-time energy management algorithms were developed and experimentally verified. These algorithms are based on intelligent decision-making elements along with an optimization process. This was aimed at enhancing the overall performance of the power system and mitigating the effect of heavy non-linear loads with variable intensity and duration. The developed algorithms were also used for managing the charging/discharging process of plug-in electric vehicle emulators. The protection of the proposed hybrid AC/DC power system was studied. Fault analysis and protection scheme and coordination, in addition to ideas on how to retrofit currently available protection concepts and devices for AC systems in a DC network, were presented. A study was also conducted on the effect of changing the distribution architecture and distributing the storage assets on the various zones of the network on the system’s dynamic security and stability. A practical shipboard power system was studied as an example of a hybrid AC/DC power system involving pulsed loads. Generally, the proposed hybrid AC/DC power system, besides most of the ideas, controls and algorithms presented in this dissertation, were experimentally verified at the Smart Grid Testbed, Energy Systems Research Laboratory. All the developments in this dissertation were experimentally verified at the Smart Grid Testbed.
Resumo:
Students with specific learning disabilities (SLD) typically learn less history content than their peers without disabilities and show fewer learning gains. Even when they are provided with the same instructional strategies, many students with SLD struggle to grasp complex historical concepts and content area vocabulary. Many strategies involving technology have been used in the past to enhance learning for students with SLD in history classrooms. However, very few studies have explored the effectiveness of emerging mobile technology in K-12 history classrooms. ^ This study investigated the effects of mobile devices (iPads) as an active student response (ASR) system on the acquisition of U.S. history content of middle school students with SLD. An alternating treatments single subject design was used to compare the effects of two interventions. There were two conditions and a series of pretest probesin this study. The conditions were: (a) direct instruction and studying from handwritten notes using the interactive notebook strategy and (b) direct instruction and studying using the Quizlet App on the iPad. There were three dependent variables in this study: (a) percent correct on tests, (b) rate of correct responses per minute, and (c) rate of errors per minute. ^ A comparative analysis suggested that both interventions (studying from interactive notes and studying using Quizlet on the iPad) had varying degrees of effectiveness in increasing the learning gains of students with SLD. In most cases, both interventions were equally effective. During both interventions, all of the participants increased their percentage correct and increased their rate of correct responses. Most of the participants decreased their rate of errors. ^ The results of this study suggest that teachers of students with SLD should consider a post lesson review in the form of mobile devices as an ASR system or studying from handwritten notes paired with existing evidence-based practices to facilitate students’ knowledge in U.S. history. Future research should focus on the use of other interactive applications on various mobile operating platforms, on other social studies subjects, and should explore various testing formats such as oral question-answer and multiple choice. ^
Resumo:
In multi-unit organisations such as a bank and its branches or a national body delivering publicly funded health or education services through local operating units, the need arises to incentivize the units to operate efficiently. In such instances, it is generally accepted that units found to be inefficient can be encouraged to make efficiency savings. However, units which are found to be efficient need to be incentivized in a different manner. It has been suggested that efficient units could be incentivized by some reward compatible with the level to which their attainment exceeds that of the best of the rest, normally referred to as “super-efficiency”. A recent approach to this issue (Varmaz et. al. 2013) has used Data Envelopment Analysis (DEA) models to measure the super-efficiency of the whole system of operating units with and without the involvement of each unit in turn in order to provide incentives. We identify shortcomings in this approach and use it as a starting point to develop a new DEA-based system for incentivizing operating units to operate efficiently for the benefit of the aggregate system of units. Data from a small German retail bank is used to illustrate our method.
Resumo:
This chapter aims to develop a new method for the economical evaluation of Hybrid Systems for electricity production. The different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. The presented methodology was applied to evaluate the design of a photovoltaic-wind-diesel hybrid system to produce electricity for a community in the neighbourhood of Luanda, Angola. Once the hybrid generator is selected, it is proposed to provide the system with a supervisory control strategy to maximize its operating efficiency.
Cognitive Assessment System (CAS): Psychometric studies with Portuguese children from 7 to 15 years.
Resumo:
The Cognitive Assessment System (CAS) is a new measure of cognitive abilities based on the Planning, Attention, Simultaneous and Successive (PASS) Theory. This theory is derived from research in neuropsychological and cognitive Psychology with particular emphasis on the work of Luria (1973). According to Naglieri (1999) and Naglieri and Das (1997), the PASS cognitive processes are the basic building blocks of human intellectual functioning. Planning processes provide cognitive control, utilization of processes and knowledge, intentionality, and self-regulation to achieve a desired goal; Attention processes provide focused, selective cognitive activity and resistance to distraction; and, Simultaneous and Successive processes are the two forms of operating on information. The PASS theory has had a strong empirical base prior to the publication of the CAS (see Das, Naglieri & Kirby, 1994), and its research foundation remains strong (see Naglieri, 1999; Naglieri & Das, 1997). The four basic psychological processes can be used to (1) gain an understanding of how well a child thinks; (2) discover the child’s strengths and needs, which can then be used for effective differential diagnosis; (3) conduct fair assessment; and (4) select or design appropriate interventions. Compared to the traditional intelligence tests, including IQ tests, the Cognitive Assessment System (CAS) has the great advantage of relying on a modern theory of cognitive functioning, linking theory with practice.
Resumo:
The present thesis is focused on wave energy, which is a particular kind of ocean energy, and is based on the activity carried out during the EU project SEA TITAN. The main scope of this work is the design of a power electronic section for an innovative wave energy extraction system based on a switched-reluctance machine. In the first chapter, the general features of marine wave energy harvesting are treated. The concept of Wave Energy Converter (WEC) is introduced as well as the mathematical description of the waves, their characterization and measurement, the WEC classification, the operating principles and the standardization framework. Also, detailed considerations on the environmental impact are presented. The SEA TITAN project is briefly described. The second chapter is dedicated to the technical issues of the SEA TITAN project, such as the operating principle, the performance optimization carried out in the project, the main innovations as well as interesting demonstrations on the behavior of the generator and its control. In the third chapter, the power electronics converters of SEA TITAN are described, and the design choices, procedures and calculations are shown, with a further insight into the application given by analyzing the MATLAB Simulink model of the system and its control scheme. Experimental tests are reported in the fourth chapter, with graphs and illustrations of the power electronic apparatus interfaced with the real machine. Finally, the conclusion in the fifth chapter offers a global overview of the project and opens further development pathways.
Resumo:
La realtà aumentata (AR) è una nuova tecnologia adottata in chirurgia prostatica con l'obiettivo di migliorare la conservazione dei fasci neurovascolari (NVB) ed evitare i margini chirurgici positivi (PSM). Abbiamo arruolato prospetticamente pazienti con diagnosi di cancro alla prostata (PCa) sul base di biopsia di fusione mirata con mpMRI positiva. Prima dell'intervento, i pazienti arruolati sono stati indirizzati a sottoporsi a ricostruzione del modello virtuale 3D basato su mpMRI preoperatoria immagini. Infine, il chirurgo ha eseguito la RARP con l'ausilio del modello 3D proiettato in AR all'interno della console robotica (RARP guidata AR-3D). I pazienti sottoposti a AR RARP sono stati confrontati con quelli sottoposti a "RARP standard" nello stesso periodo. Nel complesso, i tassi di PSM erano comparabili tra i due gruppi; I PSM a livello della lesione indice erano significativamente più bassi nei pazienti riferiti al gruppo AR-3D (5%) rispetto a quelli nel gruppo di controllo (20%; p = 0,01). La nuova tecnica di guida AR-3D per l'analisi IFS può consentono di ridurre i PSM a livello della lesione dell'indice
Resumo:
The most widespread work-related diseases are musculoskeletal disorders (MSD) caused by awkward postures and excessive effort to upper limb muscles during work operations. The use of wearable IMU sensors could monitor the workers constantly to prevent hazardous actions, thus diminishing work injuries. In this thesis, procedures are developed and tested for ergonomic analyses in a working environment, based on a commercial motion capture system (MoCap) made of 17 Inertial Measurement Units (IMUs). An IMU is usually made of a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer that, through sensor fusion algorithms, estimates its attitude. Effective strategies for preventing MSD rely on various aspects: firstly, the accuracy of the IMU, depending on the chosen sensor and its calibration; secondly, the correct identification of the pose of each sensor on the worker’s body; thirdly, the chosen multibody model, which must consider both the accuracy and the computational burden, to provide results in real-time; finally, the model scaling law, which defines the possibility of a fast and accurate personalization of the multibody model geometry. Moreover, the MSD can be diminished using collaborative robots (cobots) as assisted devices for complex or heavy operations to relieve the worker's effort during repetitive tasks. All these aspects are considered to test and show the efficiency and usability of inertial MoCap systems for assessing ergonomics evaluation in real-time and implementing safety control strategies in collaborative robotics. Validation is performed with several experimental tests, both to test the proposed procedures and to compare the results of real-time multibody models developed in this thesis with the results from commercial software. As an additional result, the positive effects of using cobots as assisted devices for reducing human effort in repetitive industrial tasks are also shown, to demonstrate the potential of wearable electronics in on-field ergonomics analyses for industrial applications.
Resumo:
The industrial context is changing rapidly due to advancements in technology fueled by the Internet and Information Technology. The fourth industrial revolution counts integration, flexibility, and optimization as its fundamental pillars, and, in this context, Human-Robot Collaboration has become a crucial factor for manufacturing sustainability in Europe. Collaborative robots are appealing to many companies due to their low installation and running costs and high degree of flexibility, making them ideal for reshoring production facilities with a short return on investment. The ROSSINI European project aims to implement a true Human-Robot Collaboration by designing, developing, and demonstrating a modular and scalable platform for integrating human-centred robotic technologies in industrial production environments. The project focuses on safety concerns related to introducing a cobot in a shared working area and aims to lay the groundwork for a new working paradigm at the industrial level. The need for a software architecture suitable to the robotic platform employed in one of three use cases selected to deploy and test the new technology was the main trigger of this Thesis. The chosen application consists of the automatic loading and unloading of raw-material reels to an automatic packaging machine through an Autonomous Mobile Robot composed of an Autonomous Guided Vehicle, two collaborative manipulators, and an eye-on-hand vision system for performing tasks in a partially unstructured environment. The results obtained during the ROSSINI use case development were later used in the SENECA project, which addresses the need for robot-driven automatic cleaning of pharmaceutical bins in a very specific industrial context. The inherent versatility of mobile collaborative robots is evident from their deployment in the two projects with few hardware and software adjustments. The positive impact of Human-Robot Collaboration on diverse production lines is a motivation for future investments in research on this increasingly popular field by the industry.
Resumo:
Industrial robots are an inalienable part of modern automated production. Typical applications of robots include welding, painting, (dis)assembly, packaging, labeling, palletizing, pick and place and others. Many of that applications includes object manipulation. If the shape and position of the object are known in advance, it is possible to design the trajectory of the robot’s end-effector to take and place. Such a strategy is applicable for rigid objects and widely used in the manufacturing field. But flexible (deformable) objects can change their shape and position upon contact with the robot’s end-effector or environment. That is the reason why the general approach is unacceptable. It means that the robot can fail to grasp such an object and can’t place it in the desired position. This thesis has addressed the problem of cable manipulation by bilateral robotic setup for the industrial manufacturing of electrical switchgear. The considered solution is based on the idea of tensioned cable. If the cable was grasped by the ends and tensioned, it has a line shape. Since the position of the robot’s end-effectors known, the position of the cable is known as well. Such an approach is capable to place cable in cable ducts of switchgear. The considered solution has been tested experimentally on a real bilateral robotic setup.
Resumo:
Gaze estimation has gained interest in recent years for being an important cue to obtain information about the internal cognitive state of humans. Regardless of whether it is the 3D gaze vector or the point of gaze (PoG), gaze estimation has been applied in various fields, such as: human robot interaction, augmented reality, medicine, aviation and automotive. In the latter field, as part of Advanced Driver-Assistance Systems (ADAS), it allows the development of cutting-edge systems capable of mitigating road accidents by monitoring driver distraction. Gaze estimation can be also used to enhance the driving experience, for instance, autonomous driving. It also can improve comfort with augmented reality components capable of being commanded by the driver's eyes. Although, several high-performance real-time inference works already exist, just a few are capable of working with only a RGB camera on computationally constrained devices, such as a microcontroller. This work aims to develop a low-cost, efficient and high-performance embedded system capable of estimating the driver's gaze using deep learning and a RGB camera. The proposed system has achieved near-SOTA performances with about 90% less memory footprint. The capabilities to generalize in unseen environments have been evaluated through a live demonstration, where high performance and near real-time inference were obtained using a webcam and a Raspberry Pi4.
Resumo:
This thesis investigates if emotional states of users interacting with a virtual robot can be recognized reliably and if specific interaction strategy can change the users’ emotional state and affect users’ risk decision. For this investigation, the OpenFace [1] emotion recognition model was intended to be integrated into the Flobi [2] system, to allow the agent to be aware of the current emotional state of the user and to react appropriately. There was an open source ROS [3] bridge available online to integrate OpenFace to the Flobi simulation but it was not consistent with some other projects in Flobi distribution. Then due to technical reasons DeepFace was selected. In a human-agent interaction, the system is compared to a system without using emotion recognition. Evaluation could happen at different levels: evaluation of emotion recognition model, evaluation of the interaction strategy, and evaluation of effect of interaction on user decision. The results showed that the happy emotion induction was 58% and fear emotion induction 77% successful. Risk decision results show that: in happy induction after interaction 16.6% of participants switched to a lower risk decision and 75% of them did not change their decision and the remaining switched to a higher risk decision. In fear inducted participants 33.3% decreased risk 66.6 % did not change their decision The emotion recognition accuracy was and had bias to. The sensitivity and specificity is calculated for each emotion class. The emotion recognition model classifies happy emotions as neutral in most of the time.