921 resultados para Ribosomal Dna-sequence
Resumo:
Interleukin 12 (IL-12) is an important immunoregulatory cytokine whose receptor is a member of the hematopoietin receptor superfamily. We have recently demonstrated that stimulation of human T and natural killer cells with IL-12 induces tyrosine phosphorylation of the Janus family tyrosine kinase JAK2 and Tyk2, implicating these kinases in the immediate biochemical response to IL-12. Recently, transcription factors known as STATs (signal transducers and activators of transcription) have been shown to be tyrosine phosphorylated and activated in response to a number of cytokines that bind hematopoietin receptors and activate JAK kinases. In this report we demonstrate that IL-12 induces tyrosine phosphorylation of a recently identified STAT family member, STAT4, and show that STAT4 expression is regulated by T-cell activation. Furthermore, we show that IL-12 stimulates formation of a DNA-binding complex that recognizes a DNA sequence previously shown to bind STAT proteins and that this complex contains STAT4. These data, and the recent demonstration of JAK phosphorylation by IL-12, identify a rapid signal-transduction pathway likely to mediate IL-12-induced gene expression.
Resumo:
The biological nature of carnation small viroid-like RNA (CarSV RNA), a 275-nt circular molecule with self-cleaving hammerhead structures in its strands of both polarities, was investigated. The lack of infectivity observed in a series of transmission assays in carnation indicates that CarSV RNA, in spite of sharing structural similarities with viroid and viroid-like satellite RNAs from plants, does not belong to either of these two groups. Additional evidence in this direction comes from the observation that CarSV RNA also exists in carnation plants as DNA tandem repeats. In this respect, CarSV RNA is similar to a small transcript of a tandemly repeated DNA sequence of the newt genome. Moreover, CarSV and newt RNAs have similarities in their sequences as well as in some characteristics of their corresponding hammerhead structures. Further analyses have revealed that CarSV DNA is found directly fused to DNA sequences of carnation etched ring caulimovirus, a pararetrovirus, most likely in the form of an extrachromosomal element. The properties of the CarSV RNA/DNA system are those of a retroviroid-like element having some features in common with viroid and viroid-like satellite RNAs from plants and others with the newt transcript.
Resumo:
Mycolic acids represent a major constituent of the mycobacterial cell wall complex, which provides the first line of defense against potentially lethal environmental conditions. Slow-growing pathogenic mycobacteria such as Mycobacterium tuberculosis modify their mycolic acids by cyclopropanation, whereas fast-growing saprophytic species such as Mycobacterium smegmatis do not, suggesting that this modification may be associated with an increase in oxidative stress experienced by the slow-growing species. We have demonstrated the transformation of the distal cis double bond in the major mycolic acid of M. smegmatis to a cis-cyclopropane ring upon introduction of cosmid DNA from M. tuberculosis. This activity was localized to a single gene (cma1) encoding a protein that was 34% identical to the cyclopropane fatty acid synthase from Escherichia coli. Adjacent regions of the DNA sequence encode open reading frames that display homology to other fatty acid biosynthetic enzymes, indicating that some of the genes required for mycolic acid biosynthesis may be clustered in this region. M. smegmatis overexpressing the cma1 gene product significantly resist killing by hydrogen peroxide, suggesting that this modification may be an important adaptation of slow-growing mycobacteria to oxidative stress.
Resumo:
We have explored the feasibility of using a "double-tagging" assay for assessing which amino acids of a protein are responsible for its binding to another protein. We have chosen the adenovirus E1A-retinoblastoma gene product (pRB) proteins for a model system, and we focused on the high-affinity conserved region 2 of adenovirus E1A (CR2). We used site-specific mutagenesis to generate a mutant E1A gene with a lysine instead of an aspartic acid at position 121 within the CR2 site. We demonstrated that this mutant exhibited little binding to pRB by the double-tagging assay. We also have shown that this lack of binding is not due to any significant decrease in the level of expression of the beta-galactosidase-E1A fusion protein. We then created a "library" of phage expressing beta-galactosidase-E1A fusion proteins with a variety of different mutations within CR2. This library of E1A mutations was used in a double-tagging screening to identify mutant clones that bound to pRB. Three classes of phage were identified: the vast majority of clones were negative and exhibited no binding to pRB. Approximately 1 in 10,000 bound to pRB but not to E1A ("true positives"). A variable number of clones appeared to bind equally well to both pRB and E1A ("false positives"). The DNA sequence of 10 true positive clones yielded the following consensus sequence: DLTCXEX, where X = any amino acid. The recovery of positive clones with only one of several allowed amino acids at each position suggests that most, if not all, of the conserved residues play an important role in binding to pRB. On the other hand, the DNA sequence of the negative clones appeared random. These results are consistent with those obtained from other sources. These data suggest that a double-tagging assay can be employed for determining which amino acids of a protein are important for specifying its interaction with another protein if the complex forms within bacteria. This assay is rapid and up to 1 x 10(6) mutations can be screened at one time.
Resumo:
Ceruloplasmin is an abundant alpha 2-serum glycoprotein that contains 95% of the copper found in the plasma of vertebrate species. We report here on the identification of a genetic defect in the ceruloplasmin gene in a patient previously noted to have a total absence of circulating serum ceruloplasmin in association with late-onset retinal and basal ganglia degeneration. In this patient T2 (transverse relaxation time)-weighted magnetic resonance imaging of the brain revealed basal ganglia densities consistent with iron deposition, and liver biopsy confirmed the presence of excess iron. Although Southern blot analysis of the patient's DNA was normal, PCR amplification of 18 of the 19 exons composing the human ceruloplasmin gene revealed a distinct size difference in exon 7. DNA sequence analysis of this exon revealed a 5-bp insertion at amino acid 410, resulting in a frame-shift mutation and a truncated open reading frame. The validity of this mutation was confirmed by analysis of DNA from the patient's daughter, which revealed heterozygosity for this same 5-bp insertion. The presence of this mutation in conjunction with the clinical and pathologic findings demonstrates an essential role for ceruloplasmin in human biology and identifies aceruloplasminemia as an autosomal recessive disorder of iron metabolism. These findings support previous studies that identified ceruloplasmin as a ferroxidase and are remarkably consistent with recent studies on the essential role of a homologous copper oxidase in iron metabolism in yeast. The clinical and laboratory findings suggest that additional patients with movement disorders and nonclassical Wilson disease should be examined for ceruloplasmin gene mutations.
Innovative analytical strategies for the development of sensor devices and mass spectrometry methods
Resumo:
Il lavoro presentato in questa tesi di Dottorato è incentrato sullo sviluppo di strategie analitiche innovative basate sulla sensoristica e su tecniche di spettrometria di massa in ambito biologico e della sicurezza alimentare. Il primo capitolo tratta lo studio di aspetti metodologici ed applicativi di procedure sensoristiche per l’identificazione e la determinazione di biomarkers associati alla malattia celiaca. In tale ambito, sono stati sviluppati due immunosensori, uno a trasduzione piezoelettrica e uno a trasduzione amperometrica, per la rivelazione di anticorpi anti-transglutaminasi tissutale associati a questa malattia. L’innovazione di questi dispositivi riguarda l’immobilizzazione dell’enzima tTG nella conformazione aperta (Open-tTG), che è stato dimostrato essere quella principalmente coinvolta nella patogenesi. Sulla base dei risultati ottenuti, entrambi i sistemi sviluppati si sono dimostrati una valida alternativa ai test di screening attualmente in uso per la diagnosi della celiachia. Rimanendo sempre nel contesto della malattia celiaca, ulteriore ricerca oggetto di questa tesi di Dottorato, ha riguardato lo sviluppo di metodi affidabili per il controllo di prodotti “gluten-free”. Il secondo capitolo tratta lo sviluppo di un metodo di spettrometria di massa e di un immunosensore competitivo per la rivelazione di prolammine in alimenti “gluten-free”. E’ stato sviluppato un metodo LC-ESI-MS/MS basato su un’analisi target con modalità di acquisizione del segnale selected reaction monitoring per l’identificazione di glutine in diversi cereali potenzialmente tossici per i celiaci. Inoltre ci si è focalizzati su un immunosensore competitivo per la rivelazione di gliadina, come metodo di screening rapido di farine. Entrambi i sistemi sono stati ottimizzati impiegando miscele di farina di riso addizionata di gliadina, avenine, ordeine e secaline nel caso del sistema LC-MS/MS e con sola gliadina nel caso del sensore. Infine i sistemi analitici sono stati validati analizzando sia materie prime (farine) che alimenti (biscotti, pasta, pane, etc.). L’approccio sviluppato in spettrometria di massa apre la strada alla possibilità di sviluppare un test di screening multiplo per la valutazione della sicurezza di prodotti dichiarati “gluten-free”, mentre ulteriori studi dovranno essere svolti per ricercare condizioni di estrazione compatibili con l’immunosaggio competitivo, per ora applicabile solo all’analisi di farine estratte con etanolo. Terzo capitolo di questa tesi riguarda lo sviluppo di nuovi metodi per la rivelazione di HPV, Chlamydia e Gonorrhoeae in fluidi biologici. Si è scelto un substrato costituito da strips di carta in quanto possono costituire una valida piattaforma di rivelazione, offrendo vantaggi grazie al basso costo, alla possibilità di generare dispositivi portatili e di poter visualizzare il risultato visivamente senza la necessità di strumentazioni. La metodologia sviluppata è molto semplice, non prevede l’uso di strumentazione complessa e si basa sull’uso della isothermal rolling-circle amplification per l’amplificazione del target. Inoltre, di fondamentale importanza, è l’utilizzo di nanoparticelle colorate che, essendo state funzionalizzate con una sequenza di DNA complementare al target amplificato derivante dalla RCA, ne permettono la rivelazione a occhio nudo mediante l’uso di filtri di carta. Queste strips sono state testate su campioni reali permettendo una discriminazione tra campioni positivi e negativi in tempi rapidi (10-15 minuti), aprendo una nuova via verso nuovi test altamente competitivi con quelli attualmente sul mercato.
Resumo:
Aim: High gamma diversity in tropical montane forests may be ascribed to high geographical turnover of community composition, resulting from population isolation that leads to speciation. We studied the evolutionary processes responsible for diversity and turnover in assemblages of tropical scarab beetles (Scarabaeidae) by assessing DNA sequence variation at multiple hierarchical levels. Location: A 300-km transect across six montane forests (900–1100 m) in Costa Rica. Methods: Assemblages of Scarabaeidae (subfamilies Dynastinae, Rutelinae, Melolonthinae) including 118 morphospecies and > 500 individuals were sequenced for the cox1 gene to establish species limits with a mixed Yule–coalescent method. A species-level phylogenetic tree was constructed from cox1 and rrnL genes. Total diversity and turnover among assemblages were then assessed at three hierarchical levels: haplotypes, species and higher clades. Results: DNA-based analyses showed high turnover among communities at all hierarchical levels. Turnover was highest at the haplotype level (community similarity 0.02–0.12) and decreased with each step of the hierarchy (species: 0.21–0.46; clades: 0.41–0.43). Both compositional and phylogenetic similarities of communities were geographically structured, but turnover was not correlated with distance among forests. When three major clades were investigated separately, communities of Dynastinae showed consistently higher alpha diversity, larger species ranges and lower turnover than Rutelinae and Melolonthinae. Main conclusions: Scarab communities of montane forests show evidence of evolutionary persistence of communities in relative isolation, presumably tracking suitable habitats elevationally to accommodate climatic changes. Patterns of diversity on all hierarchical levels seem to be determined by restricted dispersal, and differences in Dynastinae could be explained by their greater dispersal ability. Community-wide DNA sequencing across multiple lineages and hierarchical levels reveals the evolutionary processes that led to high beta diversity in tropical montane forests through time.
Resumo:
All living organisms require accurate mechanisms to faithfully inherit their genetic material during cell division. The centromere is a unique locus on each chromosome that supports a multiprotein structure called the kinetochore. During mitosis, the kinetochore is responsible for connecting chromosomes to spindle microtubules, allowing faithful segregation of the duplicated genome. In most organisms, centromere position and function is not defined by the local DNA sequence context but rather by an epigenetic chromatin-based mechanism. Centromere protein A (CENP-A) is central to this process, as chromatin assembled from this histone H3 variant is essential for assembly of the centromere complex, as well as for its epigenetic maintenance. As a major determinant of centromere function, CENP-A assembly requires tight control, both in its specificity for the centromere and in timing of assembly. In the last few years, there have been several new insights into the molecular mechanism that allow this process to occur. We will review these here and discuss the general implications of the mechanism of cell cycle coupling of centromere inheritance.
Resumo:
Chromatin-based epigenetic inheritance cooperates with cis-acting DNA sequence information to propagate gene expression states and chromosome architecture across cell division cycles. Histone proteins and their modifications are central components of epigenetic systems but how, and to what extent, they are propagated is a matter of continued debate. Centromeric nucleosomes, marked by the histone H3 variant CENP-A, are stable across mitotic divisions and are assembled in a locus specific and cell cycle controlled manner. The mechanism of inheritance of this unique chromatin domain has important implications for how general nucleosome transmission is controlled in space and time.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.
Resumo:
The molecular diversity of symbiotic dinoflagellates associated with the widespread western Pacific coral Plesiastrea versipora was explored in order to examine if associations between reef-building corals and symbiotic dinoflagellates change with environment. Several ribosomal DNA genes with different evolutionary rates were used.. including the large subunit (28S), the 5.8S region and the internal transcribed spacers (ITS). The phylogenetic analysis of the 28S and 5.8S rDNA regions indicated that a single endosymbiont species, highly related to one of the species of Symbiodinium in clade C (=Synbiodinium goreaui, Trench et Blank), associates with P. versipora along the Ryukyu Archipelago. The persistence of the same endosymbiont within P. versipora across this wide array of latitudes may be a result of such features as the Kuroshio Current, which brings tropical temperatures as far north as Honshu, Japan. Analysis of the faster evolving ITS rDNA region revealed significant genetic variability within endosymbionts from different populations. This variation was due to a high degree of interpopulation variability, based on the proportion of pairwise variation detected among the populations (0.95% approximately). By comparison with other studies, the results also indicate that some ITS1 haplotypes from P. versipora endosymbionts seem to be widely distributed within the western Pacific Ocean, ranging from the Great Barrier Reef to the northeast of the China Sea.
Highly organized structure in the non-coding region of the psbA minicircle from clade C Symbiodinium
Resumo:
The chloroplast genes of dinoflagellates are distributed among small, circular dsDNA molecules termed minicircles. In this paper, we describe the structure of the non-coding region of the psbA minicircle from Symbiodinium. DNA sequence was obtained from five Symbiodinium strains obtained from four different coral host species (Goniopora tenuidens, Heliofungia actiniformis, Leptastrea purpurea and Pocillopora damicornis), which had previously been determined to be closely related using LSU rDNA region D1/D2 sequence analysis. Eight distinct sequence blocks, consisting of four conserved cores interspersed with two metastable regions and flanked by two variable regions, occurred at similar positions in all strains. Inverted repeats (IRs) occurred in tandem or 'twin' formation within two of the four cores. The metastable regions also consisted of twin IRs and had modular behaviour, being either fully present or completely absent in the different strains. These twin IRs are similar in sequence to double-hairpin elements (DHEs) found in the mitochondrial genomes of some fungi, and may be mobile elements or may serve a functional role in recombination or replication. Within the central unit (consisting of the cores plus the metastable regions), all IRs contained perfect sequence inverses, implying they are highly evolved. IRs were also present outside the central unit but these were imperfect and possessed by individual strains only. A central adenine-rich sequence most closely resembled one in the centre of the non-coding part of Amphidinium operculatum minicircles, and is a potential origin of replication. Sequence polymorphism was extremely high in the variable regions, suggesting that these regions may be useful for distinguishing strains that cannot be differentiated using molecular markers currently available for Symbiodinium.
Resumo:
We report the construction of the mouse full-length cDNA encyclopedia, the most extensive view of a complex transcriptome, on the basis of preparing and sequencing 246 libraries. Before cloning, cDNAs were enriched in full-length by Cap-Trapper, and in most cases, aggressively subtracted/normalized. We have produced 1,442,236 successful 3'-end sequences clustered into 171,144 groups, from which 60,770 clones were fully sequenced cDNAs annotated in the FANTOM-2 annotation. We have also produced 547,149 5' end reads, which clustered into 124,258 groups. Altogether, these cDNAs were further grouped in 70,000 transcriptional units (TU), which represent the best coverage of a transcriptome so far. By monitoring the extent of normalization/subtraction, we define the tentative equivalent coverage (TEC), which was estimated to be equivalent to >12,000,000 ESTs derived from standard libraries. High coverage explains discrepancies between the very large. numbers of clusters (and TUs) of this project, which also include non-protein-coding RNAs, and the lower gene number estimation of genome annotations. Altogether, S'-end clusters identify regions that are potential promoters for 8637 known genes and S'-end clusters suggest the presence of almost 63,000 transcriptional starting points. An estimate of the frequency of polyadenylation signals suggests that at least half of the singletons in the EST set represent real mRNAs. Clones accounting for about half of the predicted TUs await further sequencing. The continued high-discovery rate suggests that the task of transcriptome discovery is not yet complete.
Resumo:
Manual curation has long been held to be the gold standard for functional annotation of DNA sequence. Our experience with the annotation of more than 20,000 full-length cDNA sequences revealed problems with this approach, including inaccurate and inconsistent assignment of gene names, as well as many good assignments that were difficult to reproduce using only computational methods. For the FANTOM2 annotation of more than 60,000 cDNA clones, we developed a number of methods and tools to circumvent some of these problems, including an automated annotation pipeline that provides high-quality preliminary annotation for each sequence by introducing an uninformative filter that eliminates uninformative annotations, controlled vocabularies to accurately reflect both the functional assignments and the evidence supporting them, and a highly refined, Web-based manual annotation tool that allows users to view a wide array of sequence analyses and to assign gene names and putative functions using a consistent nomenclature. The ultimate utility of our approach is reflected in the low rate of reassignment of automated assignments by manual curation. Based on these results, we propose a new standard for large-scale annotation, in which the initial automated annotations are manually investigated and then computational methods are iteratively modified and improved based on the results of manual curation.